通俗易懂理解——dijkstra演算法求最短路徑
迪傑斯特拉(Dijkstra)演算法是典型最短路徑演算法,用於計算一個節點到其他節點的最短路徑。
它的主要特點是以起始點為中心向外層層擴充套件(廣度優先搜尋思想),直到擴充套件到終點為止
###基本思想
-
通過Dijkstra計算圖G中的最短路徑時,需要指定起點s(即從頂點s開始計算)。
-
此外,引進兩個集合S和U。S的作用是記錄已求出最短路徑的頂點(以及相應的最短路徑長度),而U則是記錄還未求出最短路徑的頂點(以及該頂點到起點s的距離)。
-
初始時,S中只有起點s;U中是除s之外的頂點,並且U中頂點的路徑是"起點s到該頂點的路徑"。然後,從U中找出路徑最短的頂點,並將其加入到S中;接著,更新U中的頂點和頂點對應的路徑。 然後,再從U中找出路徑最短的頂點,並將其加入到S中;接著,更新U中的頂點和頂點對應的路徑。 … 重複該操作,直到遍歷完所有頂點。
###操作步驟
-
初始時,S只包含起點s;U包含除s外的其他頂點,且U中頂點的距離為"起點s到該頂點的距離"[例如,U中頂點v的距離為(s,v)的長度,然後s和v不相鄰,則v的距離為∞]。
-
從U中選出"距離最短的頂點k",並將頂點k加入到S中;同時,從U中移除頂點k。
-
更新U中各個頂點到起點s的距離。之所以更新U中頂點的距離,是由於上一步中確定了k是求出最短路徑的頂點,從而可以利用k來更新其它頂點的距離;例如,(s,v)的距離可能大於(s,k)+(k,v)的距離。
-
重複步驟(2)和(3),直到遍歷完所有頂點。
單純的看上面的理論可能比較難以理解,下面通過例項來對該演算法進行說明。
###圖解
以上圖G4為例,來對迪傑斯特拉進行演算法演示(以第4個頂點D為起點)。以下B節點中23應為13。
初始狀態:S是已計算出最短路徑的頂點集合,U是未計算除最短路徑的頂點的集合!
第1步:將頂點D加入到S中。
此時,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。 注:C(3)表示C到起點D的距離是3。
第2步:將頂點C加入到S中。
上一步操作之後,U中頂點C到起點D的距離最短;因此,將C加入到S中,同時更新U中頂點的距離。以頂點F為例,之前F到D的距離為∞;但是將C加入到S之後,F到D的距離為9=(F,C)+(C,D)。
此時,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。
第3步:將頂點E加入到S中。
上一步操作之後,U中頂點E到起點D的距離最短;因此,將E加入到S中,同時更新U中頂點的距離。還是以頂點F為例,之前F到D的距離為9;但是將E加入到S之後,F到D的距離為6=(F,E)+(E,D)。
此時,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。
第4步:將頂點F加入到S中。
此時,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。
第5步:將頂點G加入到S中。
此時,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。
第6步:將頂點B加入到S中。
此時,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。
第7步:將頂點A加入到S中。
此時,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。
此時,起點D到各個頂點的最短距離就計算出來了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)。
###程式碼
鄰接矩陣為例,
// 鄰接矩陣
typedef struct _graph
{
char vexs[MAX]; // 頂點集合
int vexnum; // 頂點數
int edgnum; // 邊數
int matrix[MAX][MAX]; // 鄰接矩陣
}Graph, *PGraph;
// 邊的結構體
typedef struct _EdgeData
{
char start; // 邊的起點
char end; // 邊的終點
int weight; // 邊的權重
}EData;
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
Graph是鄰接矩陣對應的結構體。
vexs用於儲存頂點,vexnum是頂點數,edgnum是邊數;matrix則是用於儲存矩陣資訊的二維陣列。
例如,matrix[i][j]=1,則表示"頂點i(即vexs[i])"和"頂點j(即vexs[j])"是鄰接點;matrix[i][j]=0,則表示它們不是鄰接點。
EData是鄰接矩陣邊對應的結構體。
####Dijkstra演算法
/*
* Dijkstra最短路徑。
* 即,統計圖(G)中"頂點vs"到其它各個頂點的最短路徑。
*
* 引數說明:
* G -- 圖
* vs -- 起始頂點(start vertex)。即計算"頂點vs"到其它頂點的最短路徑。
* prev -- 前驅頂點陣列。即,prev[i]的值是"頂點vs"到"頂點i"的最短路徑所經歷的全部頂點中,位於"頂點i"之前的那個頂點。
* dist -- 長度陣列。即,dist[i]是"頂點vs"到"頂點i"的最短路徑的長度。
*/
void dijkstra(Graph G, int vs, int prev[], int dist[])
{
int i,j,k;
int min;
int tmp;
int flag[MAX]; // flag[i]=1表示"頂點vs"到"頂點i"的最短路徑已成功獲取。
// 初始化
for (i = 0; i < G.vexnum; i++)
{
flag[i] = 0; // 頂點i的最短路徑還沒獲取到。
prev[i] = 0; // 頂點i的前驅頂點為0。
dist[i] = G.matrix[vs][i];// 頂點i的最短路徑為"頂點vs"到"頂點i"的權。
}
// 對"頂點vs"自身進行初始化
flag[vs] = 1;
dist[vs] = 0;
// 遍歷G.vexnum-1次;每次找出一個頂點的最短路徑。
for (i = 1; i < G.vexnum; i++)
{
// 尋找當前最小的路徑;
// 即,在未獲取最短路徑的頂點中,找到離vs最近的頂點(k)。
min = INF;
for (j = 0; j < G.vexnum; j++)
{
if (flag[j]==0 && dist[j]<min)
{
min = dist[j];
k = j;
}
}
// 標記"頂點k"為已經獲取到最短路徑
flag[k] = 1;
// 修正當前最短路徑和前驅頂點
// 即,當已經"頂點k的最短路徑"之後,更新"未獲取最短路徑的頂點的最短路徑和前驅頂點"。
for (j = 0; j < G.vexnum; j++)
{
tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢位
if (flag[j] == 0 && (tmp < dist[j]) )
{
dist[j] = tmp;
prev[j] = k;
}
}
}
// 列印dijkstra最短路徑的結果
printf("dijkstra(%c): \n", G.vexs[vs]);
for (i = 0; i < G.vexnum; i++)
printf(" shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
###參考資料
1, http://www.cnblogs.com/skywang12345/p/3711512.html