Pandas中DataFrame基本函式整理(小結)
阿新 • • 發佈:2020-07-21
建構函式
DataFrame([data,index,columns,dtype,copy]) #構造資料框
屬性和資料
DataFrame.axes #index: 行標籤;columns: 列標籤 DataFrame.as_matrix([columns]) #轉換為矩陣 DataFrame.dtypes #返回資料的型別 DataFrame.ftypes #返回每一列的 資料型別float64:dense DataFrame.get_dtype_counts() #返回資料框資料型別的個數 DataFrame.get_ftype_counts() #返回資料框資料型別float64:dense的個數 DataFrame.select_dtypes([include,include]) #根據資料型別選取子資料框 DataFrame.values #Numpy的展示方式 DataFrame.axes #返回橫縱座標的標籤名 DataFrame.ndim #返回資料框的緯度 DataFrame.size #返回資料框元素的個數 DataFrame.shape #返回資料框的形狀 DataFrame.memory_usage() #每一列的儲存
型別轉換
DataFrame.astype(dtype[,copy,errors]) #轉換資料型別 DataFrame.copy([deep]) #deep深度複製資料 DataFrame.isnull() #以布林的方式返回空值 DataFrame.notnull() #以布林的方式返回非空值
索引和迭代
DataFrame.head([n]) #返回前n行資料 DataFrame.at #快速標籤常量訪問器 DataFrame.iat #快速整型常量訪問器 DataFrame.loc #標籤定位,使用名稱 DataFrame.iloc #整型定位,使用數字 DataFrame.insert(loc,column,value) #在特殊地點loc[數字]插入column[列名]某列資料 DataFrame.iter() #Iterate over infor axis DataFrame.iteritems() #返回列名和序列的迭代器 DataFrame.iterrows() #返回索引和序列的迭代器 DataFrame.itertuples([index,name]) #Iterate over DataFrame rows as namedtuples,with index value as first element of the tuple. DataFrame.lookup(row_labels,col_labels) #Label-based “fancy indexing” function for DataFrame. DataFrame.pop(item) #返回刪除的專案 DataFrame.tail([n]) #返回最後n行 DataFrame.xs(key[,axis,level,drop_level]) #Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. DataFrame.isin(values) #是否包含資料框中的元素 DataFrame.where(cond[,other,inplace,…]) #條件篩選 DataFrame.mask(cond[,…]) #Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other. DataFrame.query(expr[,inplace]) #Query the columns of a frame with a boolean expression.
二元運算
DataFrame.add(other[,fill_value]) #加法,元素指向 DataFrame.sub(other[,fill_value]) #減法,元素指向 DataFrame.mul(other[,fill_value]) #乘法,元素指向 DataFrame.div(other[,fill_value]) #小數除法,元素指向 DataFrame.truediv(other[,…]) #真除法,元素指向 DataFrame.floordiv(other[,…]) #向下取整除法,元素指向 DataFrame.mod(other[,fill_value]) #模運算,元素指向 DataFrame.pow(other[,fill_value]) #冪運算,元素指向 DataFrame.radd(other[,fill_value]) #右側加法,元素指向 DataFrame.rsub(other[,fill_value]) #右側減法,元素指向 DataFrame.rmul(other[,fill_value]) #右側乘法,元素指向 DataFrame.rdiv(other[,fill_value]) #右側小數除法,元素指向 DataFrame.rtruediv(other[,…]) #右側真除法,元素指向 DataFrame.rfloordiv(other[,…]) #右側向下取整除法,元素指向 DataFrame.rmod(other[,fill_value]) #右側模運算,元素指向 DataFrame.rpow(other[,fill_value]) #右側冪運算,元素指向 DataFrame.lt(other[,level]) #類似Array.lt DataFrame.gt(other[,level]) #類似Array.gt DataFrame.le(other[,level]) #類似Array.le DataFrame.ge(other[,level]) #類似Array.ge DataFrame.ne(other[,level]) #類似Array.ne DataFrame.eq(other[,level]) #類似Array.eq DataFrame.combine(other,func[,fill_value,…]) #Add two DataFrame objects and do not propagate NaN values,so if for a DataFrame.combine_first(other) #Combine two DataFrame objects and default to non-null values in frame calling the method.
函式應用&分組&視窗
DataFrame.apply(func[,broadcast,…]) #應用函式 DataFrame.applymap(func) #Apply a function to a DataFrame that is intended to operate elementwise,i.e. DataFrame.aggregate(func[,axis]) #Aggregate using callable,string,dict,or list of string/callables DataFrame.transform(func,*args,**kwargs) #Call function producing a like-indexed NDFrame DataFrame.groupby([by,…]) #分組 DataFrame.rolling(window[,min_periods,…]) #滾動視窗 DataFrame.expanding([min_periods,freq,…]) #拓展視窗 DataFrame.ewm([com,span,halflife,…]) #指數權重視窗
描述統計學
DataFrame.abs() #返回絕對值 DataFrame.all([axis,bool_only,skipna]) #Return whether all elements are True over requested axis DataFrame.any([axis,skipna]) #Return whether any element is True over requested axis DataFrame.clip([lower,upper,axis]) #Trim values at input threshold(s). DataFrame.clip_lower(threshold[,axis]) #Return copy of the input with values below given value(s) truncated. DataFrame.clip_upper(threshold[,axis]) #Return copy of input with values above given value(s) truncated. DataFrame.corr([method,min_periods]) #返回本資料框成對列的相關性係數 DataFrame.corrwith(other[,drop]) #返回不同資料框的相關性 DataFrame.count([axis,numeric_only]) #返回非空元素的個數 DataFrame.cov([min_periods]) #計算協方差 DataFrame.cummax([axis,skipna]) #Return cumulative max over requested axis. DataFrame.cummin([axis,skipna]) #Return cumulative minimum over requested axis. DataFrame.cumprod([axis,skipna]) #返回累積 DataFrame.cumsum([axis,skipna]) #返回累和 DataFrame.describe([percentiles,include,…]) #整體描述資料框 DataFrame.diff([periods,axis]) #1st discrete difference of object DataFrame.eval(expr[,inplace]) #Evaluate an expression in the context of the calling DataFrame instance. DataFrame.kurt([axis,skipna,…]) #返回無偏峰度Fisher's (kurtosis of normal == 0.0). DataFrame.mad([axis,level]) #返回偏差 DataFrame.max([axis,…]) #返回最大值 DataFrame.mean([axis,…]) #返回均值 DataFrame.median([axis,…]) #返回中位數 DataFrame.min([axis,…]) #返回最小值 DataFrame.mode([axis,numeric_only]) #返回眾數 DataFrame.pct_change([periods,fill_method]) #返回百分比變化 DataFrame.prod([axis,…]) #返回連乘積 DataFrame.quantile([q,numeric_only]) #返回分位數 DataFrame.rank([axis,method,numeric_only]) #返回數字的排序 DataFrame.round([decimals]) #Round a DataFrame to a variable number of decimal places. DataFrame.sem([axis,ddof]) #返回無偏標準誤 DataFrame.skew([axis,…]) #返回無偏偏度 DataFrame.sum([axis,…]) #求和 DataFrame.std([axis,ddof]) #返回標準誤差 DataFrame.var([axis,ddof]) #返回無偏誤差
從新索引&選取&標籤操作
DataFrame.add_prefix(prefix) #新增字首 DataFrame.add_suffix(suffix) #新增字尾 DataFrame.align(other[,join,level]) #Align two object on their axes with the DataFrame.drop(labels[,…]) #返回刪除的列 DataFrame.drop_duplicates([subset,keep,…]) #Return DataFrame with duplicate rows removed,optionally only DataFrame.duplicated([subset,keep]) #Return boolean Series denoting duplicate rows,optionally only DataFrame.equals(other) #兩個資料框是否相同 DataFrame.filter([items,like,regex,axis]) #過濾特定的子資料框 DataFrame.first(offset) #Convenience method for subsetting initial periods of time series data based on a date offset. DataFrame.head([n]) #返回前n行 DataFrame.idxmax([axis,skipna]) #Return index of first occurrence of maximum over requested axis. DataFrame.idxmin([axis,skipna]) #Return index of first occurrence of minimum over requested axis. DataFrame.last(offset) #Convenience method for subsetting final periods of time series data based on a date offset. DataFrame.reindex([index,columns]) #Conform DataFrame to new index with optional filling logic,placing NA/NaN in locations having no value in the previous index. DataFrame.reindex_axis(labels[,…]) #Conform input object to new index with optional filling logic,placing NA/NaN in locations having no value in the previous index. DataFrame.reindex_like(other[,…]) #Return an object with matching indices to myself. DataFrame.rename([index,columns]) #Alter axes input function or functions. DataFrame.rename_axis(mapper[,copy]) #Alter index and / or columns using input function or functions. DataFrame.reset_index([level,drop,…]) #For DataFrame with multi-level index,return new DataFrame with labeling information in the columns under the index names,defaulting to ‘level_0',‘level_1',etc. DataFrame.sample([n,frac,replace,…]) #返回隨機抽樣 DataFrame.select(crit[,axis]) #Return data corresponding to axis labels matching criteria DataFrame.set_index(keys[,append ]) #Set the DataFrame index (row labels) using one or more existing columns. DataFrame.tail([n]) #返回最後幾行 DataFrame.take(indices[,convert]) #Analogous to ndarray.take DataFrame.truncate([before,after,axis ]) #Truncates a sorted NDFrame before and/or after some particular index value.
處理缺失值
DataFrame.dropna([axis,how,thresh,…]) #Return object with labels on given axis omitted where alternately any DataFrame.fillna([value,…]) #填充空值 DataFrame.replace([to_replace,value,…]) #Replace values given in ‘to_replace' with ‘value'.
從新定型&排序&轉變形態
DataFrame.pivot([index,values]) #Reshape data (produce a “pivot” table) based on column values. DataFrame.reorder_levels(order[,axis]) #Rearrange index levels using input order. DataFrame.sort_values(by[,ascending]) #Sort by the values along either axis DataFrame.sort_index([axis,…]) #Sort object by labels (along an axis) DataFrame.nlargest(n,columns[,keep]) #Get the rows of a DataFrame sorted by the n largest values of columns. DataFrame.nsmallest(n,keep]) #Get the rows of a DataFrame sorted by the n smallest values of columns. DataFrame.swaplevel([i,j,axis]) #Swap levels i and j in a MultiIndex on a particular axis DataFrame.stack([level,dropna]) #Pivot a level of the (possibly hierarchical) column labels,returning a DataFrame (or Series in the case of an object with a single level of column labels) having a hierarchical index with a new inner-most level of row labels. DataFrame.unstack([level,fill_value]) #Pivot a level of the (necessarily hierarchical) index labels,returning a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. DataFrame.melt([id_vars,value_vars,…]) #“Unpivots” a DataFrame from wide format to long format,optionally DataFrame.T #Transpose index and columns DataFrame.to_panel() #Transform long (stacked) format (DataFrame) into wide (3D,Panel) format. DataFrame.to_xarray() #Return an xarray object from the pandas object. DataFrame.transpose(*args,**kwargs) #Transpose index and columns
Combining& joining&merging
DataFrame.append(other[,ignore_index,…]) #追加資料 DataFrame.assign(**kwargs) #Assign new columns to a DataFrame,returning a new object (a copy) with all the original columns in addition to the new ones. DataFrame.join(other[,on,lsuffix,…]) #Join columns with other DataFrame either on index or on a key column. DataFrame.merge(right[,left_on,…]) #Merge DataFrame objects by performing a database-style join operation by columns or indexes. DataFrame.update(other[,overwrite,…]) #Modify DataFrame in place using non-NA values from passed DataFrame.
時間序列
DataFrame.asfreq(freq[,…]) #將時間序列轉換為特定的頻次 DataFrame.asof(where[,subset]) #The last row without any NaN is taken (or the last row without DataFrame.shift([periods,axis]) #Shift index by desired number of periods with an optional time freq DataFrame.first_valid_index() #Return label for first non-NA/null value DataFrame.last_valid_index() #Return label for last non-NA/null value DataFrame.resample(rule[,…]) #Convenience method for frequency conversion and resampling of time series. DataFrame.to_period([freq,copy]) #Convert DataFrame from DatetimeIndex to PeriodIndex with desired DataFrame.to_timestamp([freq,axis]) #Cast to DatetimeIndex of timestamps,at beginning of period DataFrame.tz_convert(tz[,copy]) #Convert tz-aware axis to target time zone. DataFrame.tz_localize(tz[,…]) #Localize tz-naive TimeSeries to target time zone.
作圖
DataFrame.plot([x,y,kind,ax,….]) #DataFrame plotting accessor and method DataFrame.plot.area([x,y]) #面積圖Area plot DataFrame.plot.bar([x,y]) #垂直條形圖Vertical bar plot DataFrame.plot.barh([x,y]) #水平條形圖Horizontal bar plot DataFrame.plot.box([by]) #箱圖Boxplot DataFrame.plot.density(**kwds) #核密度Kernel Density Estimate plot DataFrame.plot.hexbin(x,y[,C,…]) #Hexbin plot DataFrame.plot.hist([by,bins]) #直方圖Histogram DataFrame.plot.kde(**kwds) #核密度Kernel Density Estimate plot DataFrame.plot.line([x,y]) #線圖Line plot DataFrame.plot.pie([y]) #餅圖Pie chart DataFrame.plot.scatter(x,s,c]) #散點圖Scatter plot DataFrame.boxplot([column,by,…]) #Make a box plot from DataFrame column optionally grouped by some columns or DataFrame.hist(data[,grid,…]) #Draw histogram of the DataFrame's series using matplotlib / pylab.
轉換為其他格式
DataFrame.from_csv(path[,header,sep,…]) #Read CSV file (DEPRECATED,please use pandas.read_csv() instead). DataFrame.from_dict(data[,orient,dtype]) #Construct DataFrame from dict of array-like or dicts DataFrame.from_items(items[,orient]) #Convert (key,value) pairs to DataFrame. DataFrame.from_records(data[,…]) #Convert structured or record ndarray to DataFrame DataFrame.info([verbose,buf,max_cols,…]) #Concise summary of a DataFrame. DataFrame.to_pickle(path[,compression,…]) #Pickle (serialize) object to input file path. DataFrame.to_csv([path_or_buf,na_rep]) #Write DataFrame to a comma-separated values (csv) file DataFrame.to_hdf(path_or_buf,key,**kwargs) #Write the contained data to an HDF5 file using HDFStore. DataFrame.to_sql(name,con[,flavor,…]) #Write records stored in a DataFrame to a SQL database. DataFrame.to_dict([orient,into]) #Convert DataFrame to dictionary. DataFrame.to_excel(excel_writer[,…]) #Write DataFrame to an excel sheet DataFrame.to_json([path_or_buf,…]) #Convert the object to a JSON string. DataFrame.to_html([buf,col_space]) #Render a DataFrame as an HTML table. DataFrame.to_feather(fname) #write out the binary feather-format for DataFrames DataFrame.to_latex([buf,…]) #Render an object to a tabular environment table. DataFrame.to_stata(fname[,convert_dates,…]) #A class for writing Stata binary dta files from array-like objects DataFrame.to_msgpack([path_or_buf,encoding]) #msgpack (serialize) object to input file path DataFrame.to_sparse([fill_value,kind]) #Convert to SparseDataFrame DataFrame.to_dense() #Return dense representation of NDFrame (as opposed to sparse) DataFrame.to_string([buf,…]) #Render a DataFrame to a console-friendly tabular output. DataFrame.to_clipboard([excel,sep]) #Attempt to write text representation of object to the system clipboard This can be pasted into Excel,for example.
到此這篇關於Pandas中DataFrame基本函式整理(小結)的文章就介紹到這了,更多相關Pandas DataFrame基本函式內容請搜尋我們以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援我們!