1. 程式人生 > 其它 >5.4.2 正弦函式、餘弦函式的性質1(週期性與奇偶性)

5.4.2 正弦函式、餘弦函式的性質1(週期性與奇偶性)

\({\color{Red}{歡迎到學科網下載資料學習 }}\)
【基礎過關係列】2022-2023學年高一數學上學期同步知識點剖析精品講義(人教A版2019)
\({\color{Red}{ 跟貴哥學數學,so \quad easy!}}\)

必修第一冊同步鞏固,難度2顆星!

基礎知識

周期函式

一般地,對於函式\(f(x)\),如果存在一個非零常數\(T\),使得定義域內的每一個\(x\)值,都滿足\(f(x+T)=f(x)\),那麼函式\(f(x)\)就叫做周期函式,\(T\)叫做該函式的週期.
解釋
(1)從解析式\(f(x+T)=f(x)\)來看:任一自變數\(x\)對應函式值\(y\)

\(x\)增加\(T\)後對應函式值相等;
(2)從圖象看:整體函式圖象是由一部分圖象像“分身術”一樣向兩邊延申,而那一部分圖象的水平長度就是其正週期!

周期函式的週期不止一個,可正可負,比如上面第\(2\)圖對應的函式\(f(x)\)的週期有\(-2\),\(-4\),…及其\(2\),\(4\),…等.
(3) 如果在周期函式\(f(x)\)的所有周期中存在一個最小的正數,那麼這個最小的正數叫做\(f(x)\)的最小正週期.

【例】\(f(x-4)=f(x)\),那\(f(x)\)的一個正週期是多少?
\(∵f(x-4)=f(x)\)\(∴f(x)=f(x+4)\),所以\(f(x)\)

的一個正週期是\(4\).
 

正弦函式,餘弦函式的影象與性質

注 表中的\(k∈Z\)

\(y=\sin ⁡x\) \(y=\cos ⁡x\)
影象
定義域 \(R\) \(R\)
值域 \([-1 ,1]\) \([-1 ,1]\)
週期性 \(2π\) \(2π\)
對稱中心 \((kπ ,0)\) \(\left(kπ+\dfrac{\pi}{2},0\right)\)
對稱軸 \(x=kπ+\dfrac{\pi}{2}\) \(x=kπ\)

解釋
(1) 週期
根據週期的定義,由於\(\sin ⁡(x+2kπ)=\sin ⁡x\)\(\cos ⁡(x+2kπ)=\cos ⁡x\)

可知\(2π\)\(4π\)\(-2π\)\(-4π\)….都是正弦函式、餘弦函式的週期,其中\(2π\)是最小正週期.
三角函式\(f(x)=A \sin ⁡(ωx+φ)\)\(f(x)=A \cos ⁡(ωx+φ)\)的最小正週期 \(T=\dfrac{2 \pi}{|\omega|}\).
(2) 奇偶性
\(\sin ⁡(-x)=-\sin ⁡x\)\(\cos ⁡(-x)=\cos ⁡x\),或者看正弦曲線關於原點對稱,餘弦曲線關於\(y\)軸對稱,均可知正弦函式是奇函式,餘弦函式是偶函式.
(3) 如何理解三角函式的對稱軸、對稱中心?
主要是結合圖象及其週期性,比如如何理解正弦函式\(f(x)=\sin ⁡x\)對稱中心\((kπ ,0)\)?
① 在一個週期\([0,2π)\)內,找到一個對稱中心\((0,0)\)
② 接著每隔半個週期\(π\)個單位就有一個對稱中心,則\((0+kπ,0)\)\((kπ ,0)\)是其對稱中心.
類似可得到正弦函式的對稱軸方程,餘弦函式的對稱軸方程與對稱中心.

【例】判斷函式\(f(x)=\cos ⁡|x|\)的奇偶性.
解析 函式\(f(x)=\cos ⁡|x|\)的定義域是\(R\),且\(\cos ⁡|-x|=\cos ⁡|x|\),故\(f(x)=\cos ⁡|x|\)是偶函式.
 

基本方法

【題型1】週期性

【典題1】 求下列函式的週期:
  (1)\(y=\sin \left(2x+\dfrac{\pi}{3}\right)(x∈R)\)\(\qquad \qquad\)
(2)\(y=\left|\sin x\right|(x∈R)\)
解析 (1)方法1 \(z=2x+\dfrac{\pi}{3}\)
\(∵x∈R\)\(∴z∈R\),函式\(y=\sin z\)的最小正週期是\(2π\),就是說變數\(z\)只要且至少要增加到\(z+2π\),函式\(y=\sin z(z∈R)\)的值才能重複取得,而\(z+2π=2x+\dfrac{\pi}{3}+2π=2(x+π)+\dfrac{\pi}{3}\)
\(∴\)自變數\(x\)只要且至少要增加到\(x+π\),函式值才能重複取得,
從而函式\(y=\sin \left(2x+\dfrac{\pi}{3}\right)(x∈R)\)的週期是\(π\)
方法2 \(y=\sin \left(2x+\dfrac{\pi}{3}\right)(x∈R)\)中,\(ω=2\)\(\therefore T=\dfrac{2 \pi}{|2|}=\pi\)
(2)作出\(y=|\sin x|\)的圖象如圖:

由圖象易知\(y=|\sin x|\)的週期為\(π\)
點撥 求函數週期的方法:
1.定義法\(f(x+T)=f(x)\)
2.三角函式\(f(x)=A \sin ⁡(ωx+φ)\)\(f(x)=A \cos ⁡(ωx+φ)\)的最小正週期 \(T=\dfrac{2 \pi}{|\omega|}\)
3.數形結合,注意函式圖象的各種變換.
 

【典題2】 函式\(f(x)=\sin \left(ωx-\dfrac{\pi}{3}\right)\)在區間\(\left[0,2π\right]\)上至少存在\(5\)個不同的零點,則正整數\(ω\)的最小值為(  )
  A.\(2\) \(\qquad \qquad \qquad \qquad\)
B.\(3\) \(\qquad \qquad \qquad \qquad\)
C.\(4\) \(\qquad \qquad \qquad \qquad\)
D.\(5\)
解析 函式\(f(x)=\sin \left(ωx-\dfrac{\pi}{3}\right)\)在區間\([0,2π]\)上至少存在\(5\)個不同的零點,
\(2 T+\dfrac{3 T}{4}<2 \pi\),整理得: \(\dfrac{11}{4} \cdot \dfrac{2 \pi}{\omega}<2 \pi\),解得: \(\omega>\dfrac{11}{4}\)
故選:\(B\)
 

【鞏固練習】

1.下列函式中,週期為\(π\)的函式為(  )
  A.\(y=\sin \left(\dfrac{1}{4} x+\dfrac{\pi}{6}\right)\)  \(\qquad \qquad \qquad \qquad\)
B.\(y=\sin \left(\dfrac{1}{2} x+\dfrac{\pi}{3}\right)\) \(\qquad \qquad \qquad \qquad\)

C.\(y=\cos \left(2x-\dfrac{\pi}{3}\right)\) \(\qquad \qquad \qquad \qquad\)
D.\(y=\cos \left(4x+\dfrac{\pi}{4}\right)\)
 

2.下列函式中,週期為\(\dfrac{\pi}{2}\)的是(  )
  A. \(y=\sin \dfrac{x}{2}\) \(\qquad \qquad \qquad \qquad\)
B.\(y=\cos 2x\) \(\qquad \qquad \qquad \qquad\)
C.\(y=|\sin 2x|\) \(\qquad \qquad \qquad \qquad\)
D.\(y=\sin |x|\)
 

3.若函式\(y=2\sin \left(ωx+\dfrac{\pi}{4}\right)(ω>0)\)的週期為4π,則\(ω=\)\(\underline{\quad \quad}\)
 

4.設函式\(f(x)=2\cos \left(\dfrac{1}{2} x-\dfrac{\pi}{3}\right)\),若對任意\(x∈R\)都有\(f(x_1)≤f(x)≤f(x_2)\)成立,則\(|x_1-x_2 |\)的最小值為\(\underline{\quad \quad}\)
 

參考答案

  1. 答案 \(C\)
    解析 利用週期公式\(T=\dfrac{2\pi}{ω}\),可知\(C\)中函數週期\(T=\dfrac{2\pi}{2}=π\).故選\(C\)

  2. 答案 \(C\)
    解析 對於選項\(A\):函式 \(y=\sin \dfrac{x}{2}\)的最小正週期為\(4π\),故正確.
    對於選項\(B\):函式的最小正週期為\(π\).故錯誤.
    對於選項\(C\):函式的最小正週期為\(\dfrac{\pi}{2}\).故錯誤.
    對於選項\(D\):函式不為周期函式,故錯誤.
    故選:\(C\)

  3. 答案 \(\dfrac{1}{2}\)
    解析\(T=\dfrac{2\pi}{ω}\)\(\dfrac{2\pi}{ω}=4π\)\(∴ω=\dfrac{1}{2}\)

  4. 答案 \(2π\)
    解析 函式 \(f(x)=2\cos \left(\dfrac{1}{2} x-\dfrac{\pi}{3}\right)\),若對於任意的\(x∈R\),都有\(f(x_1)≤f(x)≤f(x_2)\)
    \(∴f(x_1)\)是函式的最小值,\(f(x_2)\)是函式的最大值,
    \(|x_1-x_2 |\)的最小值就是函式的半週期 \(\dfrac{T}{2}=\dfrac{1}{2} \times \dfrac{2 \pi}{\dfrac{1}{2}}=2 \pi\).
     

【題型2】 奇偶性

【典題1】 判斷下列函式的奇偶性:
  (1)\(f(x)=\sin x\cdot\cos x\)\(\qquad \qquad\)
(2) \(f(x)=\dfrac{\cos x}{1-\sin x}\)\(\qquad \qquad\)
(3) \(f(x)=\sqrt{1-\cos x}+\sqrt{\cos x-1}\)
解析 (1)函式的定義域為\(R\),關於原點對稱.
\(∵f(-x)=\sin (-x)\cos (-x)=-\sin x\cos x=-f(x)\)
\(∴f(x)=\sin x\cos x\)為奇函式.
(2)函式應滿足\(1-\sin x≠0\)
\(∴\)函式的定義域為\(\{x∣x≠2kπ+\dfrac{\pi}{2},k∈Z\}\),顯然定義域不關於原點對稱,
\(∴f(x)=\dfrac{\cos x}{1-\sin x}\)為非奇非偶函式.
(3)由\(\left\{\begin{array}{l} 1-\cos x \geq 0 \\ \cos x-1 \geq 0 \end{array}\right.\)\(\cos x=1\)
\(∴\)函式的定義域為\(\{x∣x=2kπ,k∈Z\}\),定義域關於原點對稱.
\(\cos x=1\)時,\(f(-x)=0\)\(f(x)=±f(-x)\)
\(∴f(x)=\sqrt{1-\cos x}+\sqrt{\cos x-1}\)既是奇函式又是偶函式.
點撥 判斷函式奇偶性先確定定義域是否關於原點對稱,再利用定義法、圖象法或性質法判斷.性質法:奇+奇=奇,偶+偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.
 

【典題2】 函式\(y=\sin \left(2x+\dfrac{\pi}{3}\right)\)的圖象(  )
  A.關於點\(\left(\dfrac{\pi}{6} ,0\right)\)對稱   B.關於點\(\left(\dfrac{\pi}{3} ,0\right)\)對稱
  C.關於直線\(x=\dfrac{\pi}{6}\)對稱   D.關於直線\(x=\dfrac{\pi}{3}\)對稱
解析 方法1 對於函式 \(y=\sin \left(2x+\dfrac{\pi}{3}\right)\)
(求出函式的所有對稱軸和對稱中心再判斷)
\(2x+\dfrac{\pi}{3}=\dfrac{\pi}{2}+kπ\),則\(x=\dfrac{\pi}{12}+\dfrac{k\pi}{2}\) , 則函式的對稱軸是\(x=\dfrac{\pi}{12}+\dfrac{k\pi}{2} (k∈N^*)\)
\(\dfrac{\pi}{12}+\dfrac{k\pi}{2} =\dfrac{\pi}{6}\),解得\(k= \dfrac{1}{6}∉N^*\);若\(\dfrac{\pi}{12}+\dfrac{k\pi}{2} =\dfrac{\pi}{3}\),解得\(k=\dfrac{1}{2}∉N^*\),故排除\(C\) ,\(D\)
\(2x+\dfrac{\pi}{3}=kπ\),則\(x=-\dfrac{\pi}{6}+\dfrac{k\pi}{2}\) , 則函式的對稱中心是\(\left(-\dfrac{\pi}{6}+\dfrac{k\pi}{2},0\right) (k∈N^*)\)
\(-\dfrac{\pi}{6}+\dfrac{k\pi}{2}=\dfrac{\pi}{6}\),解得\(k= \dfrac{2}{3}∉N^*\),可排除\(A\)
\(-\dfrac{\pi}{6}+\dfrac{k\pi}{2}=\dfrac{\pi}{3}\),解得\(k=1∈N^*\),故關於點\(\left(\dfrac{\pi}{3} ,0\right)\)對稱.
故選:\(B\)
方法2 對於函式 \(y=\sin \left(2x+\dfrac{\pi}{3}\right)\)
\(x=\dfrac{\pi}{6}\)時,\(2x+\dfrac{\pi}{3}=2\dfrac{\pi}{3}\),而\(\left(\dfrac{2\pi}{3} ,0\right)\)不是正弦函式\(y=\sin x\)的對稱中心,故\(A\)錯誤;
\(x=\dfrac{\pi}{3}\)時,\(2x+\dfrac{\pi}{3}=π\),而\((π,0)\)是正弦函式\(y=\sin x\)的對稱中心,故\(B\)正確;
\(x=\dfrac{\pi}{6}\)時,\(2x+\dfrac{\pi}{3}=\dfrac{2\pi}{3}\),而\(x=\dfrac{2\pi}{3}\)不是正弦函式\(y=\sin x\)的對稱軸,故\(C\)錯誤;
\(x=\dfrac{\pi}{3}\)時,\(2x+\dfrac{\pi}{3}=π\),而\(x=π\)不是正弦函式\(y=\sin x\)的對稱軸,故\(D\)錯誤;
故選:\(B\)
點撥 本題兩種方法,
方法1 是求出三角函式的全部對稱軸或對稱中心(此時把\(ωx+φ\)看成整體),再判斷;
方法2 是把問題轉化正弦函式\(y=\sin x\)的性質判斷;
對於三角函式\(f(x)=A\sin (ωx+φ)+B\)
① 若\(x=x_0\)是其對稱軸,則\(ωx_0+φ\)是正弦函式\(y=\sin x\)的對稱軸;
② 若\((x_0 ,B)\)是其對稱中心,則\((ωx_0+φ ,B)\)滿足函式\(y=A\sin x+B\)的對稱中心.
對於三角函式\(f(x)=A\cos (ωx+φ)+B\)類似.
 

【典題3】 已知函式 \(f(x)=\cos ⁡\left(ωx+\dfrac{\pi}{3}\right)(ω>0)\)的一條對稱軸為\(x=\dfrac{\pi}{3}\),一個對稱中心為點\(\left(\dfrac{\pi}{12},0\right)\),則\(ω\)最小值\(\underline{\quad \quad}\) .
解析 由於函式的對稱軸方程為\(x=\dfrac{\pi}{3}\)
所以\(\dfrac{\pi}{3} ω+\dfrac{\pi}{3}=k_1 π\),\((k∈Z)\),整理得\(ω=3k_1-1(k∈Z)\)
函式的一個對稱中心為點 \(\left(\dfrac{\pi}{12},0\right)\)
所以\(\dfrac{\pi}{12}ω+\dfrac{\pi}{3}=k_2 π+\dfrac{\pi}{2}\),整理得\(ω=12k_2+2\)\((k∈Z)\)
由於\(ω>0\)
所以當\(k_1=1\)\(k_2=0\)時,\(ω\)取到最小值為\(2\)
故答案為:\(2\)
 

【鞏固練習】

1.函式\(f(x)=\sin (-x)\)的奇偶性是(  )
  A .奇函式 \(\qquad \qquad \qquad \qquad\)
B.偶函式 \(\qquad \qquad \qquad \qquad\)
C.既是奇函式,又是偶函式 \(\qquad \qquad \qquad \qquad\)
D.非奇非偶函式
 

2.在平面直角座標系\(xOy\)中,函式\(y=2\sin ⁡\left(x-\dfrac{\pi}{6}\right)\)的圖象( )
  A. 關於直線\(x=\dfrac{\pi}{6}\)對稱 \(\qquad \qquad \qquad \qquad\)
B. 關於點\(⁡\left(\dfrac{\pi}{6},0\right)\)對稱 \(\qquad \qquad \qquad \qquad\)
C. 關於直線\(x=-\dfrac{\pi}{6}\)對稱 \(\qquad \qquad \qquad \qquad\)
D. 關於點\(⁡\left(-\dfrac{\pi}{6},0\right)\)對稱
 

3.已知函式\(f(x)=\cos \left(\omega x+\dfrac{7}{8} \pi\right)(\omega>0)\)的圖象關於點\(⁡\left(\dfrac{\pi}{4},0\right)\)對稱,則\(f(x)\)的最小正週期\(T\)的最大值為(  )
  A. \(\dfrac{2 \pi}{5}\) \(\qquad \qquad \qquad \qquad\)
B. \(\dfrac{3 \pi}{5}\) \(\qquad \qquad \qquad \qquad\)
C. \(\dfrac{4 \pi}{5}\) \(\qquad \qquad \qquad \qquad\)
D. \(\dfrac{6\pi}{5}\)
 

4.已知點\((2,0)\)為函式\(f(x)=2 \cos \left(\dfrac{\pi}{3} x+\varphi\right)\left(|\varphi|<\dfrac{\pi}{2}\right)\)圖象的一個對稱中心,則實數\(φ=\)(  )
  A.\(-\dfrac{\pi}{3}\) \(\qquad \qquad \qquad \qquad\)
B.\(\dfrac{\pi}{6}\) \(\qquad \qquad \qquad \qquad\)
C.\(\dfrac{\pi}{3}\) \(\qquad \qquad \qquad \qquad\)
D.\(-\dfrac{\pi}{6}\)
 

5.已知直線\(x=x_1\),\(x=x_2\)分別是曲線 \(f(x)=2 \sin \left(x+\dfrac{\pi}{3}\right)\)\(g(x)=-\cos x\)的對稱軸,則\(f(x_1-x_2)=\) \(\underline{\quad \quad}\) .
 

6.已知直線\(x=\dfrac{\pi}{3}\)\(x=\dfrac{5\pi}{6}\)是曲線\(y=\sin ⁡(ωx+φ)(ω>0)\)的相鄰的兩條對稱軸,則滿足條件的一個\(φ\)的值是\(\underline{\quad \quad}\)
 

7.若函式\(f(x)=4\cos ⁡(3x+φ)\left(|φ|<\dfrac{\pi}{2}\right)\)的圖象關於直線\(x=\dfrac{11 \pi}{12}\)對稱,且當\(x_1,x_2∈\left(-\dfrac{7 \pi}{12},-\dfrac{\pi}{12}\right)\)\(x_1≠x_2\)時,\(f(x_1 )=f(x_2 )\),則\(f(x_1+x_2 )=\) \(\underline{\quad \quad}\)
 

參考答案

  1. 答案 \(A\)
    解析 \(∵f(x)=\sin (-x)=-\sin x\)
    \(∴f(-x)=-\sin (-x)=\sin x=-f(x)\)
    \(∴f(x)\)是奇函式.

  2. 答案 \(B\)
    解析 利用排除法和代入法求解,當\(x=\dfrac{\pi}{6}\)時,\(y=2\sin ⁡\left(x-\dfrac{\pi}{6}\right)=0\),故選:\(B\)

  3. 答案 \(C\)
    解析 函式\(f(x)=\cos \left(\omega x+\dfrac{7}{8} \pi\right)(\omega>0)\)的圖象關於點\(⁡\left(\dfrac{\pi}{4},0\right)\)對稱,
    \(\dfrac{\pi}{4} \omega+\dfrac{7 \pi}{8}=k \pi+\dfrac{\pi}{2}(k \in Z)\),整理得: \(\omega=4 k-\dfrac{3}{2}(k \in Z)\)
    \(k=1\)時,\(ω=\dfrac{5}{2}\)
    所以週期的最大值為 \(\dfrac{2 \pi}{\dfrac{5}{2}}=\dfrac{4 \pi}{5}\),故選\(C\).

  4. 答案 \(D\)
    解析 根據題意,得\(2 \cos \left(\dfrac{\pi}{3} \times 2+\varphi\right)=0\)\(\therefore \dfrac{2 \pi}{3}+\varphi=k \pi+\dfrac{\pi}{2}(k \in Z)\)
    \(\thereforeφ=kπ-\dfrac{\pi}{6}(k∈Z)\)
    \(\because|\varphi|<\dfrac{\pi}{2}\)\(\therefore\)\(k=0\),可得\(φ=-\dfrac{\pi}{6}\)
    故選:\(D\)

  5. 答案 \(±2\)
    解析\(x+\dfrac{\pi}{3}=kπ+\dfrac{\pi}{2}\)\(x=kπ+\dfrac{\pi}{6}\),即\(f(x)\)的對稱軸為\(x=kπ+\dfrac{\pi}{6}\)\(k∈Z\)
    \(y=-cox\)的對稱軸為\(x=k_1 π\)\(k_1∈Z\)
    \(\because\)直線\(x=x_1\)\(x=x_2\)分別是曲線\(f(x)\)\(g(x)\)的對稱軸,
    \(\therefore x_1=kπ+\dfrac{\pi}{6}\)\(k∈Z\)\(x_2=k_1 π\)\(k_1∈Z\)
    \(x_1-x_2=kπ+\dfrac{\pi}{6}-k_1 π=(k-k_1)π+\dfrac{\pi}{6}\)\(k∈Z\)\(k_1∈Z\)
    \(f\left(x_1 x_2\right)=2 \sin \left[\left(k-k_1\right) \pi+\dfrac{\pi}{6}+\dfrac{\pi}{3}\right]=2 \sin \left[\left(k-k_1\right) \pi+\dfrac{\pi}{2}\right]\)\(=-2 \cos \left[\left(k-k_1\right) \pi\right]=\pm 2\).

  6. 答案 \(-\dfrac{\pi}{6}\)
    解析 直線\(x=\dfrac{\pi}{3}\)\(x=\dfrac{5\pi}{6}\)是曲線\(y=\sin ⁡(ωx+φ)(ω>0)\)的相鄰的兩條對稱軸,
    故當 \(\dfrac{T}{2}=\dfrac{5 \pi}{6}-\dfrac{\pi}{3}=\dfrac{\pi}{2}\),
    \(T=π\),解得\(ω=2\),故\(f(x)=\sin (2x+φ)\)
    \(x=\dfrac{\pi}{3}\)時, \(f\left(\dfrac{\pi}{3}\right)=\sin \left(\dfrac{2 \pi}{3}+\varphi\right)=\pm 1\),
    \(\dfrac{2\pi}{3}+φ=kπ+\dfrac{\pi}{2}\),整理得\(φ=kπ-\dfrac{\pi}{6}(k∈Z)\)
    \(k=0\)時,\(φ=-\dfrac{\pi}{6}\).

  7. 答案 \(2 \sqrt{2}\)
    解析 \(\because\)函式 \(f(x)=4\cos ⁡(3x+φ)\left(|φ|<\dfrac{\pi}{2}\right)\)的圖象關於直線 \(x=\dfrac{11 \pi}{12}\)對稱
    \(\therefore 3 \times \dfrac{11 \pi}{12}+\varphi=k \pi\),\(k∈Z\)
    \(\thereforeφ=\dfrac{\pi}{4}\)\(f(x)=4 \cos \left(3 x+\dfrac{\pi}{4}\right)\)
    且當 \(x\in\left(-\dfrac{7 \pi}{12},-\dfrac{\pi}{12}\right)\)時,\(3x+\dfrac{\pi}{4}\in \left(-\dfrac{3\pi}{2},0\right)\)
    \(x_1,x_2∈\left(-\dfrac{7 \pi}{12},-\dfrac{\pi}{12}\right)\)\(x_1≠x_2\)時,\(f(x_1 )=f(x_2 )\)
    \(f\left(x_1+x_2\right)=4 \cos \left[3\left(-\dfrac{5 \pi}{6}\right)+\dfrac{\pi}{4}\right]=4 \cos \left(-\dfrac{9 \pi}{4}\right)\)\(=4 \cos \left(-\dfrac{\pi}{4}\right)=4 \cos \dfrac{\pi}{4}=2 \sqrt{2}\).

分層練習

【A組---基礎題】

1.函式 \(f(x)=\sqrt{3} \sin \left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)\)\(x∈R\)的最小正週期為(  )
 A.\(\dfrac{\pi}{2}\)   \(\qquad \qquad \qquad \qquad\)
  B.\(π\) \(\qquad \qquad \qquad \qquad\)
   C.\(2π\) \(\qquad \qquad \qquad \qquad\)
   D.\(4π\)
 

2.下列函式中週期 為\(\dfrac{\pi}{2}\),且為偶函式的是(  )
  A.\(y=\sin 4x\) \(\qquad \qquad \qquad \qquad\)
B.\(y=\cos \dfrac{1}{4} x\) \(\qquad \qquad \qquad \qquad\)
C.\(y=\sin \left(4x+\dfrac{\pi}{2}\right)\) \(\qquad \qquad \qquad \qquad\)
D. \(y=\cos \left(\dfrac{1}{4} x-\dfrac{\pi}{2}\right)\)
 

3.若函式\(f(x)=\sin \dfrac{x+\varphi}{3}(\varphi \in[0,2 \pi])\)是偶函式,則\(φ=\)(  )
  A.\(\dfrac{\pi}{2}\)   \(\qquad \qquad \qquad \qquad\)
B.\(\dfrac{2\pi}{3}\)  \(\qquad \qquad \qquad \qquad\)
C.\(\dfrac{3\pi}{2}\)  \(\qquad \qquad \qquad \qquad\)
  D.\(\dfrac{5\pi}{3}\)
 

4.下列函式中,關於直線\(x=-\dfrac{\pi}{6}\)對稱的是(  )
  A.\(y=\sin (x+\dfrac{\pi}{3})\) \(\qquad \qquad \qquad \qquad\)
B.\(y=\sin (2x+\dfrac{\pi}{3})\)
\(\qquad \qquad \qquad \qquad\)
C.\(y=\cos (x+\dfrac{\pi}{3})\) \(\qquad \qquad \qquad \qquad\)
D.\(y=\cos (2x+\dfrac{\pi}{3})\)
 

5.已知\(\left(\dfrac{\pi}{6},0 \right)\)\(f(x)=\sin ⁡(-2x+φ)\left(|φ|<\dfrac{\pi}{2} \right)\)的一個對稱中心,則\(f(x)\)的對稱軸可能為(  )
  A. \(x=\dfrac{\pi}{2}\) \(\qquad \qquad \qquad \qquad\)
B. \(x=2\dfrac{\pi}{3}\) \(\qquad \qquad \qquad \qquad\)
C. \(x=-\dfrac{\pi}{3}\) \(\qquad \qquad \qquad \qquad\)
D.\(x=-\dfrac{\pi}{12}\)
 

6.(多選)已知函式\(f(x)=\sin x\cos 2x\),下列結論錯誤的是(  )
  A.\(y=f(x)\)的圖象關於\(x=\dfrac{\pi}{2}\)對稱 \(\qquad \qquad\)
B. \(y=f(x)\)的圖象關於\((\dfrac{\pi}{2},0)\)對稱 \(\qquad \qquad\)

C.\(y=f(x)\)的圖象關於\(y\)軸對稱 \(\qquad \qquad\)
D. \(y=f(x)\)不是周期函式
 

7.函式\(f(x)=\left|\sin (x+\dfrac{\pi}{3})\right|\)的最小正週期是\(\underline{\quad \quad}\).
 

8.函式\(f(x)=2\cos (2x+θ)\)的圖象關於原點對稱,則\(θ\)的最大負值為\(\underline{\quad \quad}\)
 

9.已知曲線 \(y=\sin \left(\omega x+\dfrac{\pi}{6}\right)\)關於\((-1,0)\)對稱,則\(|ω|\)的最小值為 .
 

10.已知\(f(n)=\sin \dfrac{⁡n\pi}{4}\),\(n∈Z\),則\(f(1)+f(2)+f(3)+⋯+f(2019)=\) \(\underline{\quad \quad}\)
 

11.已知函式 \(f(x)=\cos (2 x+\varphi)\left(|\varphi|<\dfrac{\pi}{2}\right)\)的圖象關於直線 \(x=\dfrac{11 \pi}{10}\)對稱,則\(φ=\)\(\underline{\quad \quad}\) .
 

12.已知函式 \(f(x)=\cos (3 x+\varphi)\left(-\dfrac{\pi}{2}<\varphi<\dfrac{\pi}{2}\right)\)圖象關於直線 \(x=\dfrac{5 \pi}{18}\)對稱,則函式\(f(x)\)在區間\([0,π]\)上零點的個數為\(\underline{\quad \quad}\) .
 

參考答案

  1. 答案 \(D\)
    解析 易知 \(T=\dfrac{2 \pi}{\dfrac{1}{2}}=4 \pi\),故選\(D\)

  2. 答案 \(C\)
    解析 顯然週期為\(\dfrac{\pi}{2}\)的有\(A\)\(C\),又因為 \(y=\sin \left(4x+\dfrac{\pi}{2}\right)\)是偶函式,故選\(C\)

  3. 答案 \(C\)
    解析 \(\because f(x)=\sin \dfrac{x+\varphi}{3}\)是偶函式,
    \(\therefore \sin \dfrac{\varphi}{3}=\pm 1\), \(\therefore \dfrac{\varphi}{3}=k \pi+\dfrac{\pi}{2}(k \in Z)\)
    \(\thereforeφ=3kπ+\dfrac{3\pi}{2}(k∈Z)\)
    \(\because φ∈[0,2π]\)\(\therefore\)\(k=0\)時,\(φ=\dfrac{3\pi}{2}\).故選\(C\)

  4. 答案 \(D\)
    解析\(x=-\dfrac{\pi}{6}\)代入\(y=\cos \left(2x+\dfrac{\pi}{3} \right)\),得函式值為\(1\)
    \(x=-\dfrac{\pi}{6}\)\(y=\cos \left(2x+\dfrac{\pi}{3}\right)\)的一條對稱軸,
    故選:\(D\)

  5. 答案 \(D\)
    解析 因為\(\left(\dfrac{\pi}{6},0 \right)\)\(f(x)=\sin \left(-2x+φ\right) \left(|φ|<\dfrac{\pi}{2}\right)\)的一個對稱中心,
    所以\(f \left(\dfrac{\pi}{6}\right)=0\),即\(\sin ⁡\left(-\dfrac{\pi}{3}+φ\right)=0\)\(\therefore-\dfrac{\pi}{3}+φ=kπ\),\(k∈Z\)
    \(\thereforeφ=\dfrac{\pi}{3}+kπ\),\(k∈Z\)\(\therefore f(x)=\sin \left(-2 x+\dfrac{\pi}{3}+k \pi\right)\),\(k∈Z\)
    \(-2x+\dfrac{\pi}{3}+kπ=\dfrac{\pi}{2}+nπ\),\(k,n∈Z\),
    \(x=-\dfrac{\pi}{12}+\dfrac{k-n}{2} \pi\),\(k,n∈Z\)
    \(k=n\)時,\(x=-\dfrac{\pi}{12}\).

  6. 答案 \(BCD\)
    解析 對於函式\(f(x)=\sin x\cos 2x\),
    \(\because f(π-x)=\sin (π-x)\cos 2(π-x)=\sin x\cos 2x=f(x)\)
    \(\therefore f(x)\)關於直線\(x=\dfrac{\pi}{2}\)對稱,故\(A\)正確,\(B\)不正確.
    根據\(f(-x)=-\sin x\cos 2x=-f(x)\)
    故函式為奇函式,它的圖象關於\(x\)軸對稱,故排除\(C\)
    \(\because f(x+2π)=\sin (2π+x)\cos 2(2π+x)=\sin x\cos 2x=f(x)\)
    \(\therefore2π\)是函式\(y=f(x)\)的週期,故\(D\)錯誤.
    故選:\(BCD\)

  7. 答案 \(π\)
    解析 對於 \(f(x)=\left|\sin (x+\dfrac{\pi}{3})\right|\)\(T=2π\)
    函式 \(f(x)=\left|\sin (x+\dfrac{\pi}{3})\right|\)是函式\(y=\sin \left(x+\dfrac{\pi}{3}\right)\)的圖象\(x\)軸上方的圖象不動,將\(x\)軸下方的圖象向上對摺得到的,故 \(T^{\prime}=\dfrac{T}{2}=\pi\)

  8. 答案 \(-\dfrac{\pi}{2}\)
    解析 \(\because\)函式\(f(x)=2\cos (2x+θ)\)的圖象關於原點對稱,
    \(\thereforeθ=kπ+\dfrac{\pi}{2}\),\(k∈Z\)
    \(k=-1\),可得\(θ\)的最大負值為\(-\dfrac{\pi}{2}\)
    故答案為:\(-\dfrac{\pi}{2}\)

  9. 答案 \(\dfrac{\pi}{6}\)
    解析 因為曲線 \(y=\sin \left(\omega x+\dfrac{\pi}{6}\right)\)關於\((-1,0)\)對稱,所以\(\sin ⁡(-ω+\dfrac{\pi}{6})=0\)
    可得\(-ω+\dfrac{\pi}{6}=kπ\),\(k∈Z\),解得\(ω=\dfrac{\pi}{6}-kπ\),\(k∈Z\),則\(|ω|\)的最小值為\(\dfrac{\pi}{6}\).

  10. 答案 \(1+\sqrt{2}\)
    解析 \(\because f(n)=\sin \dfrac{⁡n\pi}{4}\),\(n∈Z\)\(\therefore\)函式\(f(x)\)的最小正週期為 \(\dfrac{2 \pi}{\dfrac{\pi}{4}}=8\)
    \(\because f(1)=\sin \dfrac{\pi}{4}=\dfrac{\sqrt{2}}{2}\), \(f(2)=\sin \dfrac{\pi}{2}=1\), \(f(3)=\sin \dfrac{3 \pi}{4}=\dfrac{\sqrt{2}}{2}\),\(f(4)=\sin ⁡π=0\), \(f(5)=\sin \dfrac{5 \pi}{4}=-\dfrac{\sqrt{2}}{2}\), \(f(6)=\sin \dfrac{3 \pi}{2}=-1\), \(f(7)=\sin \dfrac{7 \pi}{4}=-\dfrac{\sqrt{2}}{2}\),\(f(8)=\sin ⁡2π=0\)
    \(\therefore f(1)+f(2)+f(3)+⋯+f(8)=0\)
    \(\therefore f(1)+f(2)+f(3)+⋯+f(2019)=252×0+f(1)+f(2)+f(3)\)
    \(=0+\dfrac{\sqrt{2}}{2}+1+\dfrac{\sqrt{2}}{2}=1+\sqrt{2}\).

  11. 答案 \(-\dfrac{\pi}{5}\)
    解析 \(\because\)函式 \(f(x)=\cos (2 x+\varphi)\left(|\varphi|<\dfrac{\pi}{2}\right)\)的圖象關於直線 \(x=\dfrac{11 \pi}{10}\)對稱,
    \(\therefore 2 \times \dfrac{11 \pi}{10}+\varphi=k \pi(k \in Z)\),
    \(φ=kπ-\dfrac{11 \pi}{5}(k∈Z)\),又\(|φ|<\dfrac{\pi}{2}\)
    \(\therefore \varphi=-\dfrac{\pi}{5}\).

  12. 答案
    解析 \(\because\)函式\(f(x)=\cos (3 x+\varphi)\left(-\dfrac{\pi}{2}<\varphi<\dfrac{\pi}{2}\right)\)圖象關於直線\(x=\dfrac{5 \pi}{18}\)對稱
    \(\therefore 3 \times \dfrac{5 \pi}{18}+\varphi=k \pi\),(\(y=\cos x\)的對稱軸是\(x=kπ\))
    \(\therefore φ=-\dfrac{5\pi}{6}+kπ\)\(k∈Z\)
    \(-\dfrac{\pi}{2}<φ<\dfrac{\pi}{2}\)知,\(k=1\)時,\(φ=\dfrac{\pi}{6}\)
    \(f(x)=\cos (3x+\dfrac{\pi}{6})\)
    \(f(x)=0\)\(3x+\dfrac{\pi}{6}=\dfrac{\pi}{2}+kπ\),\(k∈Z\)\(\therefore x=\dfrac{\pi}{9}+\dfrac{k\pi}{3}\),\(k∈Z\)
    因為\(x∈[0,π]\),所以\(k=0,1,2\)時, \(\varphi=\dfrac{\pi}{9}\), \(\dfrac{4 \pi}{9}\), \(\dfrac{7 \pi}{9}\)滿足條件,
    故零點有三個.

【B組---提高題】

1.\(f(x)=|\sin x|+|\cos x|\)的最小正週期是( )
  A.\(\dfrac{\pi}{2}\) \(\qquad \qquad \qquad \qquad\)
B.\(π\) \(\qquad \qquad \qquad \qquad\)
C.\(2π\) \(\qquad \qquad \qquad \qquad\)
D.\(3π\)
 

2.已知函式\(f(x)=\sin \left(ωx+\dfrac{\pi}{6}\right)(ω>0)\)的圖象在\((0,π)\)上有且僅有兩條對稱軸,則\(ω\)的取值範圍為(  )
  A. \(\left[1, \dfrac{3}{2}\right)\) \(\qquad \qquad \qquad \qquad\)
B. \(\left(\dfrac{4}{3}, \dfrac{3}{2}\right)\) \(\qquad \qquad \qquad \qquad\)
C. \(\left(\dfrac{4}{3}, \dfrac{7}{3}\right]\) \(\qquad \qquad \qquad \qquad\)
D. \(\left[1, \dfrac{7}{3}\right]\)
 

3.已知\(f(x)=2\sin (ωx+φ)\left(ω>0,0<φ<\dfrac{\pi}{2}\right)\)的圖象關於直線\(x=\dfrac{\pi}{6}\)對稱,若存在\(x_1\),\(x_2∈R\),使得對於任意\(x\)都有\(f(x_1)≤f(x)≤f(x_2)\),且\(|x_1-x_2 |\)的最小值為\(\dfrac{\pi}{2}\),則\(φ\)等於(  )
  A.\(\dfrac{\pi}{12}\) \(\qquad \qquad \qquad \qquad\)
B.\(\dfrac{\pi}{6}\) \(\qquad \qquad \qquad \qquad\)
C.\(\dfrac{\pi}{4}\) \(\qquad \qquad \qquad \qquad\)
D.\(\dfrac{\pi}{3}\)
 

4.(多選)已知函式\(f(x)=2\sin ⁡\left(2x-\dfrac{\pi}{6}\right)(x∈R)\),則下列命題正確的有(  )
  A. \(y=f(x)\)的圖象關於直\(x=\dfrac{2\pi}{3}\)對稱
  B. \(y=f(x)\)的圖象關於點\((\dfrac{\pi}{12},0)\)中心對稱
  C. \(y=f(x)\)的表示式可改寫為\(y=2\cos ⁡\left(2x+\dfrac{\pi}{3}\right)\)
  D.若 \(f(x_1 )=f(x_2 )=0\),則\(x_1-x_2=k\dfrac{\pi}{2}(k∈Z)\)
 
 

參考答案

  1. 答案 \(A\)
    解析 \(f\left(x+\dfrac{\pi}{2}\right)=\left|\sin \left(x+\dfrac{\pi}{2}\right)\right|+\left|\cos \left(x+\dfrac{\pi}{2}\right)\right|=|\cos x|+|\sin x|=f(x)\),
    \(\dfrac{\pi}{2}\)\(y=f(x)\)的週期,由選項可知選\(A\).

  2. 答案 \(C\)
    解析\(ωx+\dfrac{\pi}{6}=\dfrac{\pi}{2}\),\(\dfrac{3\pi}{2}\),\(\dfrac{5\pi}{2}\),解得\(x=\dfrac{\pi}{3ω}\),\(x=\dfrac{4\pi}{3ω}\),\(x=\dfrac{7\pi}{3ω}\)
    分別為\(y=f(x)\)\(y\)軸右側由左往右最近的三條對稱軸.
    要滿足圖象在\((0,π)\)上有且僅有兩條對稱軸,
    只需 \(\left\{\begin{array}{l} 0<\dfrac{\pi}{3 \omega}<\pi \\ 0<\dfrac{4 \pi}{3 \omega}<\pi \\ \dfrac{7 \pi}{3 \omega} \geq \pi \end{array}\right.\),解得 \(\dfrac{4}{3}<\omega \leq \dfrac{7}{3}\)
    故選:\(C\)

  3. 答案 \(B\)
    解析 對於函式\(f(x)=2\sin (ωx+φ)\)
    \(\because\) 對任意\(x∈R\),都有\(f(x_1)≤f(x)≤f(x_2)\),且\(|x_1-x_2 |\)的最小值為\(\dfrac{\pi}{2}\)
    \(\therefore \dfrac{T}{2}=\dfrac{\pi}{2}\),則\(T=π\)
    \(\therefore \omega=\dfrac{2 \pi}{T}=\dfrac{2 \pi}{\pi}=2\),可得\(f(x)=2\sin (2x+φ)\)
    \(\because f(x)=2\sin (ωx+φ)\)的圖象關於直線\(x=\dfrac{\pi}{6}\)對稱,
    \(\therefore 2×\dfrac{\pi}{6}+φ=2kπ+\dfrac{\pi}{2}\)\(k∈Z\),可得\(φ=2kπ+\dfrac{\pi}{6}\)\(k∈Z\)
    \(\because 0<φ<\dfrac{\pi}{2}\)\(\therefore φ=\dfrac{\pi}{6}\)
    故選:\(B\)

  4. 答案 \(BD\)
    解析 函式\(f(x)=2\sin \left(2 x-\dfrac{\pi}{6}\right)(x\in R)\)
    對於\(A\):當\(x=\dfrac{2\pi}{3}\)時,\(f\left(\dfrac{2\pi}{3}\right)=2\sin ⁡\left(\dfrac{8\pi}{6}-\dfrac{\pi}{6}\right)≠2\),故\(A\)錯誤;
    對於\(B\):當\(x=\dfrac{\pi}{12}\)時,\(f\left(\dfrac{\pi}{12}\right)=2\sin ⁡0=0\),故\(B\)正確;
    對於\(C\):由於函式 \(f(x)=2 \sin \left(2 x-\dfrac{\pi}{6}\right)=2 \cos \left(\dfrac{\pi}{2}-2 x+\dfrac{\pi}{6}\right)\) \(=2 \cos \left(2 x-\dfrac{2 \pi}{3}\right)=-2 \cos \left(2 x+\dfrac{\pi}{3}\right)\),故\(C\)錯誤;
    對於\(D\):由於\(f(x_1 )=f(x_2 )=0\),所以\(2\sin ⁡\left(2x_1-\dfrac{\pi}{6}\right)=0\)
    整理得\(2x_1-\dfrac{\pi}{6}=k_1 π\),故\(x_1=\dfrac{k_1 π}{2}+\dfrac{\pi}{12} (k_1∈Z)\),同理 \(x_2=\dfrac{k_2 \pi}{2}+\dfrac{\pi}{12}\left(k_2 \in Z\right)\)
    \(x_1-x_2=\dfrac{(k_1-k_2 )\pi}{2} (k_1,k_2∈Z)\), 故 \(x_1-x_2=\dfrac{k\pi}{2}(k∈Z)\),故\(D\)正確;
    故選\(BD\).
     

【C組---拓展題】

1.已知\(ω>0\),函式\(f(x)=\sin \left(ωx-\dfrac{\pi}{4}\right)\)的圖象在區間\(\left(\dfrac{\pi}{2},π \right)\)上有且僅有一條對稱軸,則實數\(ω\)的取值範圍是\(\underline{\quad \quad}\).
 

2.關於函式 \(f(x)=\cos x+\dfrac{1}{\cos x}\) ,有如下四個命題:
 ①\(f(x)\)的影象關於\(y\)軸對稱;②\(f(x)\)的影象關於原點對稱;
 ③\(f(x)\)的影象關於直線\(x=\dfrac{\pi}{2}\)對稱;④\(f(x)\)的影象關於點\(\left(\dfrac{\pi}{2},0 \right)\)對稱.
其中所有真命題的序號是\(\underline{\quad \quad}\)
 

參考答案

  1. 答案 \(\left(\dfrac{3}{4}, \dfrac{3}{2}\right) \cup\left(\dfrac{7}{4}, \dfrac{11}{4}\right] \cup\left[\dfrac{7}{2}, \dfrac{15}{4}\right]\)
    解析 函式數\(f(x)=\sin \left(ωx-\dfrac{\pi}{4} \right)\)的圖象在區間\(\left(\dfrac{\pi}{2},π \right)\)上有且僅有一條對稱軸,
    根據正弦函式的對稱軸性質,
    可得 \(\omega \cdot \dfrac{\pi}{2}-\dfrac{\pi}{4}<k \pi+\dfrac{\pi}{2}<\omega \pi-\dfrac{\pi}{4} \Rightarrow \dfrac{4 k+3}{4}<\omega<\dfrac{4 k+3}{2}\),\(k∈z\),①
    又因為:\(π-\dfrac{\pi}{2}≤T=\dfrac{2\pi}{ω}⇒ω≤4\);②
    \(\because ω>0\);③
    因為有且僅有一條對稱軸;
    所以還需滿足:\(ωπ-\dfrac{\pi}{4}≤(k+1)π+\dfrac{\pi}{2}\)\((k-1)π-\dfrac{\pi}{2}≤ \dfrac{ω\pi}{2}-\dfrac{\pi}{4}\)
    \(\dfrac{4 k-1}{2} \leq \omega \leq \dfrac{4 k+7}{4}\)
    聯立①②③④解得: \(\omega \in\left(\dfrac{3}{4}, \dfrac{3}{2}\right) \cup\left(\dfrac{7}{4}, \dfrac{11}{4}\right] \cup\left[\dfrac{7}{2}, \dfrac{15}{4}\right]\)
    故答案為: \(\left(\dfrac{3}{4}, \dfrac{3}{2}\right) \cup\left(\dfrac{7}{4}, \dfrac{11}{4}\right] \cup\left[\dfrac{7}{2}, \dfrac{15}{4}\right]\).

  2. 答案 ①④
    解析 函式 \(f(x)=\cos x+\dfrac{1}{\cos x}\)
    對於①,函式\(f(-x)=f(x)\),故函式為偶函式,
    \(f(x)\)的影象關於\(y\)軸對稱,故①正確;
    對於②,由於函式\(f(x)\)的影象關於\(y\)軸對稱,
    故函式\(f(x)\)的圖象不關於原點對稱,故②錯誤;
    對於③,函式 \(f(\pi-x)=\cos (\pi-x)+\dfrac{1}{\cos (\pi-x)}=-\cos x-\dfrac{1}{\cos x} \neq f(x)\)
    故函式\(f(x)\)的影象不關於\(x=\dfrac{\pi}{2}\)對稱,故③錯誤;
    對於④, \(f(\pi-x)=\cos (\pi-x)+\dfrac{1}{\cos (\pi-x)}=-\cos x-\dfrac{1}{\cos x}=-f(x)\)
    故函式\(f(x)\)影象關於點\(\left(\dfrac{\pi}{2},0\right)\)對稱,故④正確.
    故答案為:①④.