1. 程式人生 > >排列和組合的求解

排列和組合的求解

不能 結果 整體 條件 構造 討論 個數 女生 排除法

1)使用“分類計數原理”還是“分步計數原理”要根據我們完成某件事時采取的方式而定,可以分類來完成這件事時用“分類計數原理”,需要分步來完成這件事時就用“分步計數原理”;那麽,怎樣確定是分類,還是分步驟?“分類”表現為其中任何一類均可獨立完成所給的事件,而“分步”必須把各步驟均完成才能完成所給事件,所以準確理解兩個原理強調完成一件事情的幾類辦法互不幹擾,相互獨立,彼此間交集為空集,並集為全集,不論哪類辦法都能將事情單獨完成,分步計數原理強調各步驟缺一不可,需要依次完成所有步驟才能完成這件事,步與步之間互不影響,即前步用什麽方法不影響後面的步驟采用的方法。

2)排列與組合定義相近,它們的區別在於是否與順序有關。

3)復雜的排列問題常常通過試驗、畫“樹圖”、“框圖”等手段使問題直觀化,從而尋求解題途徑,由於結果的正確性難於檢驗,因此常常需要用不同的方法求解來獲得檢驗。

4)按元素的性質進行分類,按事件發生的連續性進行分步是處理排列組合問題的基本思想方法,要註意“至少、至多”等限制詞的意義。

5)處理排列、組合綜合問題,一般思想是先選元素(組合),後排列,按元素的性質進行“分類”和按事件的過程“分步”,始終是處理排列、組合問題的基本原理和方法,通過解題訓練要註意積累和掌握分類和分步的基本技能,保證每步獨立,達到分類標準明確,分步層次清楚,不重不漏。

6)在解決排列組合綜合問題時,必須深刻理解排列組合的概念,能熟練地對問題進行分類,牢記排列數與組合數公式與組合數性質,容易產生的錯誤是重復和遺漏計數。

總之,解決排列組合問題的基本規律,即:分類相加,分步相乘,排組分清,加乘明確;有序排列,無序組合;正難則反,間接排除等。

其次,我們在抓住問題的本質特征和規律,靈活運用基本原理和公式進行分析解答的同時,還要註意講究一些解題策略和方法技巧,使一些看似復雜的問題迎刃而解。下面介紹幾種常用的解題方法和策略。

一.特殊元素(位置)的“優先安排法”:對於特殊元素(位置)的排列組合問題,一般先考慮特殊,再考慮其他。

例1、 用0,2,3,4,5,五個數字,組成沒有重復數字的三位數,其中偶數共有( )。

A.24個B.30個C.40個D.60個

[分析]由於該三位數為偶數,故末尾數字必為偶數,又因為0不能排首位,故0就是其中的“特殊”元素,應該優先安排,按0排在末尾和0不排在末尾分兩類:1)0排末尾時,有A42個,2)0不排在末尾時,則有C21 A31A31個,由分數計數原理,共有偶數A42 + C21 A31A31=30個,選B。

二.總體淘汰法:對於含否定的問題,還可以從總體中把不合要求的除去。如例1中,也可用此法解答:五個數字組成三位數的全排列有A53個,排好後發現0不能排首位,而且數字3,5也不能排末位,這兩種排法要排除,故有A53--3A42+ C21A31=30個偶數。

三.合理分類與準確分步含有約束條件的排列組合問題,按元素的性質進行分類,按事情發生的連續過程分步,做到分類標準明確,分步層次清楚,不重不漏。

四.相鄰問題用捆綁法:在解決對於某幾個元素要求相鄰的問題時,先整體考慮,將相鄰的元素“捆綁”起來,看作一“大”元素與其余元素排列,然後再考慮大元素內部各元素間順序的解題策略就是捆綁法.

例2、有8本不同的書;其中數學書3本,外語書2本,其它學科書3本.若將這些書排成一列放在書架上,讓數學書排在一起,外語書也恰好排在一起的排法共有( )種.(結果用數值表示)

解:把3本數學書“捆綁”在一起看成一本大書,2本外語書也“捆綁”在一起看成一本大書,與其它3本書一起看作5個元素,共有A55種排法;又3本數學書有A33種排法,2本外語書有A22種排法;根據分步計數原理共有排法A55 A33 A22=1440(種).

註:運用捆綁法解決排列組合問題時,一定要註意“捆綁”起來的大元素內部的順序問題.

五.不相鄰問題用“插空法”:不相鄰問題是指要求某些元素不能相鄰,由其它元素將它們隔開.解決此類問題可以先將其它元素排好,再將所指定的不相鄰的元素插入到它們的間隙及兩端位置,故稱插空法.

例3、用1、2、3、4、5、6、7、8組成沒有重復數字的八位數,要求1與2相鄰,2與4相鄰,5與6相鄰,而7與8不相鄰。這樣的八位數共有( )個.(用數字作答)

解:由於要求1與2相鄰,2與4相鄰,可將1、2、4這三個數字捆綁在一起形成一個大元素,這個大元素的內部中間只能排2,兩邊排1和4,因此大元素內部共有A22種排法,再把5與6也捆綁成一個大元素,其內部也有A22種排法,與數字3共計三個元素,先將這三個元素排好,共有A33種排法,再從前面排好的三個元素形成的間隙及兩端共四個位置中任選兩個,把要求不相鄰的數字7和8插入即可,共有A42種插法,所以符合條件的八位數共有A22 A22 A33 A42=288(種).

註:運用“插空法”解決不相鄰問題時,要註意欲插入的位置是否包含兩端位置.

六.順序固定用“除法”:對於某幾個元素按一定的順序排列問題,可先把這幾個元素與其他元素一同進行全排列,然後用總的排列數除於這幾個元素的全排列數。

例4、6個人排隊,甲、乙、丙三人按“甲---乙---丙”順序排的排隊方法有多少種?

分析:不考慮附加條件,排隊方法有A66種,而其中甲、乙、丙的A33種排法中只有一種符合條件。故符合條件的排法有A66 ÷A33 =120種。(或A63種)

例5、4個男生和3個女生,高矮不相等,現在將他們排成一行,要求從左到右女生從矮到高排列,有多少種排法。

解:先在7個位置中任取4個給男生,有A74種排法,余下的3個位置給女生,只有一種排法,故有A74種排法。(也可以是A77 ÷A33種)

七.分排問題用“直排法”:把幾個元素排成若幹排的問題,可采用統一排成一排的排法來處理。

例6、7個人坐兩排座位,第一排3個人,第二排坐4個人,則不同的坐法有多少種?

分析:7個人可以在前兩排隨意就坐,再無其它條件,故兩排可看作一排來處理,不同的坐法共有A77種。

八.逐個試驗法:題中附加條件增多,直接解決困難時,用試驗逐步尋找規律。

例7.將數字1,2,3,4填入標號為1,2,3,4的方格中,每方格填1個,方格標號與所填數字均不相同的填法種數有()

A.6 B.9 C.11 D.23

解:第一方格內可填2或3或4,如第一填2,則第二方格可填1或3或4,若第二方格內填1,則後兩方格只有一種方法;若第二方格填3或4,後兩方格也只有一種填法。一共有9種填法,故選B

九、構造模型“隔板法”: 對於較復雜的排列問題,可通過設計另一情景,構造一個隔板模型來解決問題。

例8、方程a+b+c+d=12有多少組正整數解?

分析:建立隔板模型:將12個完全相同的球排成一列,在它們之間形成的11個間隙中任意插入3塊隔板,把球分成4堆,每一種分法所得4堆球的各堆球的數目,對應為a、b、c、d的一組正整解,故原方程的正整數解的組數共有C113 .

又如方程a+b+c+d=12非負整數解的個數,可用此法解。

十.排除法:對於含“至多”或“至少”的排列組合問題,若直接解答多需進行復雜討論,可以考慮“總體去雜”,即將總體中不符合條件的排列或組合刪除掉,從而計算出符合條件的排列組合數的方法.

例9、從4臺甲型和5臺乙型電視機中任意取出3臺,其中至少要甲型與乙型電視機各一臺,則不同的取法共有( )種.

A.140種B.80種C.70種D.35種

解:在被取出的3臺中,不含甲型或不合乙型的抽取方法均不合題意,因此符合題意的抽取方法有C93-C43-C53=70(種),故選C.

註:這種方法適用於反面的情況明確且易於計算的習題.

十一.逐步探索法:對於情況復雜,不易發現其規律的問題需要認真分析,探索出其規律

例10、從1到100的自然數中,每次取出不同的兩個數,使它們的和大於100,則不同的取法種數有多少種。

解:兩個數相加中以較小的數為被加數,1+100>100,1為被加數時有1種,2為被加數有2種,…,49為被加數的有49種,50為被加數的有50種,但51為被加數有49種,52為被加數有48種,…,99為被捕加數的只有1種,故不同的取法有(1+2+3+…+50)+(49+48+…+1)=2500種

十二.一一對應法:

例11.在100名選手之間進行單循環淘汰賽(即一場失敗要退出比賽)最後產生一名冠軍,要比賽幾場?

解:要產生一名冠軍,要淘汰冠軍以外的所有選手,即要淘汰99名選手,要淘汰一名就要進行一場,故比賽99場。

排列和組合的求解