1. 程式人生 > >[bzoj3527] [洛谷P3338] [Zjoi2014]力

[bzoj3527] [洛谷P3338] [Zjoi2014]力

scrip Go 一個數 pos ++ this += AI printf

Description

給出n個數qi,給出Fj的定義如下:
\[ F_j=\sum\limits_{i<j} \frac{q_iq_j}{(i-j)^2} - \sum\limits_{i>j} \frac{q_iq_j}{(i-1)^2} \]
令Ei=Fi/qi,求Ei.

Input

第一行一個整數n。
接下來n行每行輸入一個數,第i行表示qi。
n≤100000,0<qi<1000000000

Output

n行,第i行輸出Ei。與標準答案誤差不超過1e-2即可。

Sample Input

5

4006373.885184

15375036.435759

1717456.469144

8514941.004912

1410681.345880

Sample Output

-16838672.693

3439.793

7509018.566

4595686.886

10903040.872


想法

對FFT及卷積等還不是很熟,所以這道題還是參考的題解。
首先,原式化簡得:
\[ E_j=\sum\limits_{i<j} \frac{q_i}{(i-1)^2} - \sum\limits_{i>j} \frac{q_i}{(i-j)^2} \]
\(g_i= \frac{1}{i^2}\) ,則
\[ E_j=\sum\limits_{i<j} q_ig_{j-i} - \sum\limits_{i>j} q_i g_{j-i} \]


我們發現前面的求和式子就是一個卷積形式,可用fft
而後面的求和式子,若將下標i反過來,就也是一個標準的卷積形式,可用fft
之後就出來啦。


代碼

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>

using namespace std;

const int N = 300005;
const double pi = 3.1415926535897932384626433832795;

struct c{
    double r,i;
    c() { r=i=0.0; }
    c(double x,double y) { r=x; i=y; }
    c operator + (const c &b) { return c(r+b.r,i+b.i); }
    c operator += (const c &b) { return *this=*this+b; }
    c operator - (const c &b) { return c(r-b.r,i-b.i); }
    c operator -= (const c &b) { return *this=*this-b; }
    c operator * (const c &b) { return c(r*b.r-i*b.i,r*b.i+b.r*i); }
    c operator *= (const c &b) { return *this=*this*b; }
}a1[N],a2[N],b[N],x[N];

int l;
int r[N];
void fft(c A[],int ty){
    for(int i=0;i<l;i++) x[r[i]]=A[i];
    for(int i=0;i<l;i++) A[i]=x[i];
    for(int i=2;i<=l;i<<=1){ /**/
        c wn(cos(pi*2/i),ty*sin(pi*2/i));
        for(int j=0;j<l;j+=i){
            c w(1,0);
            for(int k=j;k<j+i/2;k++){
                c t=w*A[k+i/2];
                A[k+i/2]=A[k]-t;
                A[k]+=t;
                w*=wn;        
            }
        }
    } 
}
int n;

int main()
{
    scanf("%d",&n);
    for(int i=0;i<n;i++) {
        scanf("%lf",&a1[i].r);
        a2[n-i-1].r=a1[i].r;
    }
    for(int i=1;i<n;i++) b[i].r=1.0/((double)i*i);
    
    l=1;
    while(l<n*2) l<<=1;
    for(int i=0;i<l;i++) r[i]=(r[i>>1]>>1)|((i&1)*(l>>1));

    fft(a1,1); fft(a2,1); fft(b,1);
    for(int i=0;i<l;i++) {
        a1[i]*=b[i];
        a2[i]*=b[i];
    }
    fft(a1,-1); fft(a2,-1);
    
    for(int i=0;i<n;i++)
        printf("%.3lf\n",a1[i].r/l-a2[n-i-1].r/l);

    return 0;    
}

[bzoj3527] [洛谷P3338] [Zjoi2014]力