Machine Learning Week 3-advanced-optimization
阿新 • • 發佈:2018-03-08
describes completed ecif search tolerance LV exp nal cond
costfunction代碼如下
function[jVal,gradient]=costFunction(theta) jVal=(theta(1)-5)^2+(theta(2)-5)^2 gradient=zeros(2,1) gradient(1)=2*(theta(1)-5); gradient(2)=2*(theta(2)-5);
運行如下代碼段
options=optimset(‘GradObj‘,‘on‘,‘MaxIter‘,100) initialTheta=zeros(2,1) [optTheta,functionVal,exitFlag]=fminunc(@costFunction,initialTheta,options)
結果如下
1 jVal = 2 3 50 4 5 6 gradient = 7 8 0 9 0 10 11 12 jVal = 13 14 50.0000 15 16 17 gradient = 18 19 0 20 0 21 22 23 jVal = 24 25 50.0000 26 27 28 gradient = 29 30 0 31 0 32 33 34 jVal = 35 36 0 37 38 39 gradient = 40 41 0 42 0 4344 45 jVal = 46 47 5.5511e-15 48 49 50 gradient = 51 52 0 53 0 54 55 56 jVal = 57 58 5.5511e-15 59 60 61 gradient = 62 63 0 64 0 65 66 67 Local minimum found. 68 69 Optimization completed because the size of the gradient is less than 70 the default value of the optimality tolerance.71 72 <stopping criteria details> 73 74 75 optTheta = 76 77 5 78 5 79 80 81 functionVal = 82 83 0 84 85 86 exitFlag = 87 88 1
exitflag幫助你了解是否收斂
fminunc()函數
fminunc finds a local minimum of a function of several variables. X = fminunc(FUN,X0) starts at X0 and attempts to find a local minimizer X of the function FUN. FUN accepts input X and returns a scalar function value F evaluated at X. X0 can be a scalar, vector or matrix. X = fminunc(FUN,X0,OPTIONS) minimizes with the default optimization parameters replaced by values in OPTIONS, an argument created with the OPTIMOPTIONS function. See OPTIMOPTIONS for details. Use the SpecifyObjectiveGradient option to specify that FUN also returns a second output argument G that is the partial derivatives of the function df/dX, at the point X. Use the HessianFcn option to specify that FUN also returns a third output argument H that is the 2nd partial derivatives of the function (the Hessian) at the point X. The Hessian is only used by the trust-region algorithm. X = fminunc(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a structure with the function FUN in PROBLEM.objective, the start point in PROBLEM.x0, the options structure in PROBLEM.options, and solver name ‘fminunc‘ in PROBLEM.solver. Use this syntax to solve at the command line a problem exported from OPTIMTOOL. [X,FVAL] = fminunc(FUN,X0,...) returns the value of the objective function FUN at the solution X. [X,FVAL,EXITFLAG] = fminunc(FUN,X0,...) returns an EXITFLAG that describes the exit condition. Possible values of EXITFLAG and the corresponding exit conditions are listed below. See the documentation for a complete description. 1 Magnitude of gradient small enough. 2 Change in X too small. 3 Change in objective function too small. 5 Cannot decrease function along search direction. 0 Too many function evaluations or iterations. -1 Stopped by output/plot function. -3 Problem seems unbounded. [X,FVAL,EXITFLAG,OUTPUT] = fminunc(FUN,X0,...) returns a structure OUTPUT with the number of iterations taken in OUTPUT.iterations, the number of function evaluations in OUTPUT.funcCount, the algorithm used in OUTPUT.algorithm, the number of CG iterations (if used) in OUTPUT.cgiterations, the first-order optimality (if used) in OUTPUT.firstorderopt, and the exit message in OUTPUT.message. [X,FVAL,EXITFLAG,OUTPUT,GRAD] = fminunc(FUN,X0,...) returns the value of the gradient of FUN at the solution X. [X,FVAL,EXITFLAG,OUTPUT,GRAD,HESSIAN] = fminunc(FUN,X0,...) returns the value of the Hessian of the objective function FUN at the solution X. Examples FUN can be specified using @: X = fminunc(@myfun,2) where myfun is a MATLAB function such as: function F = myfun(x) F = sin(x) + 3; To minimize this function with the gradient provided, modify the function myfun so the gradient is the second output argument: function [f,g] = myfun(x) f = sin(x) + 3; g = cos(x); and indicate the gradient value is available by creating options with OPTIONS.SpecifyObjectiveGradient set to true (using OPTIMOPTIONS): options = optimoptions(‘fminunc‘,‘SpecifyObjectiveGradient‘,true); x = fminunc(@myfun,4,options); FUN can also be an anonymous function: x = fminunc(@(x) 5*x(1)^2 + x(2)^2,[5;1]) If FUN is parameterized, you can use anonymous functions to capture the problem-dependent parameters. Suppose you want to minimize the objective given in the function myfun, which is parameterized by its second argument c. Here myfun is a MATLAB file function such as function [f,g] = myfun(x,c) f = c*x(1)^2 + 2*x(1)*x(2) + x(2)^2; % function g = [2*c*x(1) + 2*x(2) % gradient 2*x(1) + 2*x(2)]; To optimize for a specific value of c, first assign the value to c. Then create a one-argument anonymous function that captures that value of c and calls myfun with two arguments. Finally, pass this anonymous function to fminunc: c = 3; % define parameter first options = optimoptions(‘fminunc‘,‘SpecifyObjectiveGradient‘,true); % indicate gradient is provided x = fminunc(@(x) myfun(x,c),[1;1],options)
Machine Learning Week 3-advanced-optimization