1. 程式人生 > >POJ1845 Sumdiv [數論,逆元]

POJ1845 Sumdiv [數論,逆元]

ide org algo tab 之前 BE bmi nbsp ron

  題目傳送門

Sumdiv

Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 26041 Accepted: 6430

Description

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

Input

The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

Output

The only line of the output will contain S modulo 9901.

Sample Input

2 3

Sample Output

15

Hint

2^3 = 8.
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).

Source

Romania OI 2002


  分析:

  題意就是求A^B在mod 9901下的約數和。

  之前遇到過一個一模一樣的題,直接分解質因數,把每一個質因數按照費馬小定理對9901-1取模然後直接暴力計算就過了,但是在這裏死活過不了。然後稍微推了一下發現這麽做有BUG,因為9900不是質數,取模的時候會出錯。

  然後翻了一下lyd的書,正解思路了解一下。

  同樣先分解質因數,再由約數和定理ans=(1+q1+q1^2+...+q1^(c1*b))*(1+q2+q2^2+...+q2^(c2*b))*...*(1+qn+qn^2+...qn^(cn*b))可得,對於每一個質因數qi,求(1+qi+qi^2+...+qi^(ci*b))時,可以用等比數列的求和公式求,即(qi^(b*ci+1))/(qi-1),但是除法並不滿足取模的分配律,所以就用逆元來代替。也就是求1/(qi-1)在模9901下的逆元。但是要註意,qi-1可能被9901整除,此時不存在逆元。不過可以發現,此時qi mod 9901=1,那麽(1+qi+qi^2+...+qi^(b*ci))=1+1+1+...+1(b*ci+1個1),特判即可。

  Code:

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<cstdlib>
 4 #include<cmath>
 5 #include<iostream>
 6 #include<iomanip>
 7 #include<algorithm>
 8 using namespace std;
 9 typedef long long ll;
10 const ll mod=9901;
11 const ll N=5e6+7;
12 ll A,B,q[N],f[N],ans,tot,cnt;
13 void fenjie()
14 {
15     for(ll i=2;i*i<=A;i++){
16         if(A%i==0){
17             q[++cnt]=i;
18             while(A%i==0){
19             f[cnt]++;A/=i;}
20         }
21     }
22     if(A>1)q[++cnt]=A,f[cnt]++;
23 }
24 inline ll power(ll x,ll y)
25 {
26     ll ret=1;
27     while(y>0){
28         if(y&1)ret=(ret*x)%mod;
29         x=(x*x)%mod;y>>=1;}
30     return ret;
31 }
32 void work()
33 {
34     fenjie();ans=1;
35     for(int i=1;i<=cnt;i++){
36         if((q[i]-1)%mod==0){
37             ans=(ans*(B*f[i]+1)%mod)%mod;
38             continue;}
39         ll x=power(q[i],B*f[i]+1);
40         x=(x-1+mod)%mod;
41         ll y=power(q[i]-1,mod-2);
42         ans=(ans*x*y)%mod;
43     }
44     printf("%lld",ans);
45 }
46 int main()
47 {
48     cin>>A>>B;
49     work();return 0;
50 }

POJ1845 Sumdiv [數論,逆元]