1. 程式人生 > >hdu1456 錯排(遞推)

hdu1456 錯排(遞推)

不容易系列之一

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 26068    Accepted Submission(s): 11451


 

Problem Description

大家常常感慨,要做好一件事情真的不容易,確實,失敗比成功容易多了!
做好“一件”事情尚且不易,若想永遠成功而總從不失敗,那更是難上加難了,就像花錢總是比掙錢容易的道理一樣。
話雖這樣說,我還是要告訴大家,要想失敗到一定程度也是不容易的。比如,我高中的時候,就有一個神奇的女生,在英語考試的時候,竟然把40個單項選擇題全部做錯了!大家都學過概率論,應該知道出現這種情況的概率,所以至今我都覺得這是一件神奇的事情。如果套用一句經典的評語,我們可以這樣總結:一個人做錯一道選擇題並不難,難的是全部做錯,一個不對。

不幸的是,這種小概率事件又發生了,而且就在我們身邊:
事情是這樣的——HDU有個網名叫做8006的男性同學,結交網友無數,最近該同學玩起了浪漫,同時給n個網友每人寫了一封信,這都沒什麼,要命的是,他竟然把所有的信都裝錯了信封!注意了,是全部裝錯喲!

現在的問題是:請大家幫可憐的8006同學計算一下,一共有多少種可能的錯誤方式呢?

 

 

Input

輸入資料包含多個多個測試例項,每個測試例項佔用一行,每行包含一個正整數n(1<n<=20),n表示8006的網友的人數。

 

 

Output

對於每行輸入請輸出可能的錯誤方式的數量,每個例項的輸出佔用一行。

 

 

Sample Input

 

2 3

 

 

Sample Output

 

1 2

思路    錯排,公式是f[n]=(n-1)*(f[n-1]+f[n-2]) 

詳解:http://www.cnblogs.com/yuyixingkong/p/3454940.html

AC程式碼:

#include<stdio.h>
#define LL long long
LL f[25];
void init()
{
    f[0]=0;
    f[1]=0;
    f[2]=1;
    for(int i=3;i<=20;i++)
    {
        f[i]=(i-1)*(f[i-1]+f[i-2]);
    }
}
int main()
{
    int n;
    init();
    while(scanf("%d",&n)!=EOF)
    {
        printf("%lld\n",f[n]);
    }
    return 0;
}