機器學習實戰DBSCN聚類
阿新 • • 發佈:2018-11-17
# !/usr/bin/python # -*- coding:utf-8 -*- import numpy as np import matplotlib.pyplot as plt import sklearn.datasets as ds import matplotlib.colors from sklearn.cluster import DBSCAN from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris iris=load_iris() y=iris.target data=iris.data[:,2:] def expand(a, b): d = (b - a) * 0.1 return a-d, b+d if __name__ == "__main__": N = 500 centers = [[1, 2], [-1, -1], [1, -1], [-1, 1]] data, y = ds.make_blobs(N, n_features=2, centers=centers, cluster_std=[0.5, 0.25, 0.7, 0.5], random_state=0) print(data.shape) data = StandardScaler().fit_transform(data) # 資料1的引數:(epsilon, min_sample) params = ((0.2, 5), (0.2, 10), (0.2, 15), (0.3, 5), (0.3, 10), (0.3, 15)) # 資料2 # t = np.arange(0, 2*np.pi, 0.1) # data1 = np.vstack((np.cos(t), np.sin(t))).T # data2 = np.vstack((2*np.cos(t), 2*np.sin(t))).T # data3 = np.vstack((3*np.cos(t), 3*np.sin(t))).T # data = np.vstack((data1, data2, data3)) # # # 資料2的引數:(epsilon, min_sample) # params = ((0.5, 3), (0.5, 5), (0.5, 10), (1., 3), (1., 10), (1., 20)) matplotlib.rcParams['font.sans-serif'] = ['SimHei'] matplotlib.rcParams['axes.unicode_minus'] = False plt.figure(figsize=(10,8), facecolor='w') plt.suptitle('DBSCAN聚類', fontsize=12) for i in range(6): eps, min_samples = params[i] model = DBSCAN(eps=eps, min_samples=min_samples) model.fit(data) y_hat = model.labels_ core_indices = np.zeros_like(y_hat, dtype=bool) core_indices[model.core_sample_indices_] = True y_unique = np.unique(y_hat) print(np.zeros_like) print(y_unique) n_clusters = y_unique.size - (1 if -1 in y_hat else 0) print(y_unique, '聚類簇的個數為:', n_clusters) # clrs = [] # for c in np.linspace(16711680, 255, y_unique.size): # clrs.append('#%06x' % c) plt.subplot(2, 3, i+1) clrs = plt.cm.Spectral(np.linspace(0, 0.8, y_unique.size)) print(clrs) for k, clr in zip(y_unique, clrs): # for k in zip(y_unique): cur = (y_hat == k) if k == -1: plt.scatter(data[cur, 0], data[cur, 1], s=10, c='k') continue plt.scatter(data[cur, 0], data[cur, 1], s=15, c=clr, edgecolors='k') plt.scatter(data[cur & core_indices][:, 0], data[cur & core_indices][:, 1], s=30, c=clr, marker='o', edgecolors='k') # plt.scatter(data[cur, 0], data[cur, 1], s=15, edgecolors='k') # plt.scatter(data[cur & core_indices][:, 0], data[cur & core_indices][:, 1], s=30, marker='o', # edgecolors='k') x1_min, x2_min = np.min(data, axis=0) x1_max, x2_max = np.max(data, axis=0) x1_min, x1_max = expand(x1_min, x1_max) x2_min, x2_max = expand(x2_min, x2_max) plt.xlim((x1_min, x1_max)) plt.ylim((x2_min, x2_max)) plt.plot() plt.grid(b=True, ls=':', color='#606060') plt.title(r'$\epsilon$ = %.1f m = %d,聚類數目:%d' % (eps, min_samples, n_clusters), fontsize=12) plt.tight_layout() plt.subplots_adjust(top=0.9) plt.show()