opencv+deep-learning實現人臉識別
早在2017年8月,OpenCV 3.3正式釋出,帶來了高度改進的“深度神經網路”(dnn)模組。
該模組支援許多深度學習框架,包括Caffe,TensorFlow和Torch / PyTorch。
dnn模組的主要貢獻者Aleksandr Rybnikov已經投入了大量的工作來使這個模組成為可能。
自從OpenCV 3.3釋出以來,有一些深度學習的OpenCV教程。然後在opencv中包含了深度學習高準確度的人臉識別器,可能不時廣泛的為人所熟知,但是效果卻好的驚人。這麼好玩,不要顧著激動,趕緊玩起來啊。
當使用OpenCV的深度神經網路模組和Caffe模型時,需要兩組檔案:
定義模型體系結構的.prototxt
.caffemodel檔案,包含實際圖層的權重
當使用使用Caffe訓練的模型進行深度學習時,這兩個檔案都是必需的。
但是,只能在GitHub倉庫中找到原型檔案。
權重檔案不包含在OpenCV示例目錄中,需要更多挖掘才能找到它們...
OpenCV的深度學習面部檢測器基於具有ResNet基礎網路的單次檢測(SSD)框架(與已有的其他OpenCV SSD不同,它通常使用MobileNet作為基礎網路)。
應用opencv人臉檢測器檢測單張影象
detect_faces.py
# import the necessary packages import numpy as np import argparse import cv2 # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="path to input image") ap.add_argument("-p", "--prototxt", required=True, help="path to Caffe 'deploy' prototxt file") ap.add_argument("-m", "--model", required=True, help="path to Caffe pre-trained model") ap.add_argument("-c", "--confidence", type=float, default=0.5, help="minimum probability to filter weak detections") args = vars(ap.parse_args()) # load our serialized model from disk print("[INFO] loading model...") net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"]) # load the input image and construct an input blob for the image # by resizing to a fixed 300x300 pixels and then normalizing it image = cv2.imread(args["image"]) (h, w) = image.shape[:2] blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0)) # pass the blob through the network and obtain the detections and # predictions print("[INFO] computing object detections...") net.setInput(blob) detections = net.forward() # loop over the detections for i in range(0, detections.shape[2]): # extract the confidence (i.e., probability) associated with the # prediction confidence = detections[0, 0, i, 2] # filter out weak detections by ensuring the `confidence` is # greater than the minimum confidence if confidence > args["confidence"]: # compute the (x, y)-coordinates of the bounding box for the # object box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") # draw the bounding box of the face along with the associated # probability text = "{:.2f}%".format(confidence * 100) y = startY - 10 if startY - 10 > 10 else startY + 10 cv2.rectangle(image, (startX, startY), (endX, endY), (0, 0, 255), 2) cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2) # show the output image cv2.imshow("Output", image) cv2.waitKey(0)
run
$ python detect_faces.py --image rooster.jpg --prototxt deploy.prototxt.txt \
--model res10_300x300_ssd_iter_140000.caffemodel
輸出帶有檢測框和置信度的人臉檢測結果,可以檢測多張人臉。OpenCV的Haar級聯因缺少“直接”角度的面孔而效果不佳,但通過使用OpenCV的深度學習面部探測器,我們能夠檢測到我的臉部。
人臉檢測器檢測視訊或者攝像頭中的資料流
detect_faces_video.py
# import the necessary packages from imutils.video import VideoStream import numpy as np import argparse import imutils import time import cv2 # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-p", "--prototxt", required=True, help="path to Caffe 'deploy' prototxt file") ap.add_argument("-m", "--model", required=True, help="path to Caffe pre-trained model") ap.add_argument("-c", "--confidence", type=float, default=0.5, help="minimum probability to filter weak detections") args = vars(ap.parse_args()) # load our serialized model from disk print("[INFO] loading model...") net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"]) # initialize the video stream and allow the camera sensor to warm up print("[INFO] starting video stream...") vs = VideoStream(src=0).start() time.sleep(2.0) # loop over the frames from the video stream while True: # grab the frame from the threaded video stream and resize it # to have a maximum width of 400 pixels frame = vs.read() frame = imutils.resize(frame, width=400) # grab the frame dimensions and convert it to a blob (h, w) = frame.shape[:2] blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0)) # pass the blob through the network and obtain the detections and # predictions net.setInput(blob) detections = net.forward() # loop over the detections for i in range(0, detections.shape[2]): # extract the confidence (i.e., probability) associated with the # prediction confidence = detections[0, 0, i, 2] # filter out weak detections by ensuring the `confidence` is # greater than the minimum confidence if confidence < args["confidence"]: continue # compute the (x, y)-coordinates of the bounding box for the # object box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") # draw the bounding box of the face along with the associated # probability text = "{:.2f}%".format(confidence * 100) y = startY - 10 if startY - 10 > 10 else startY + 10 cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 0, 255), 2) cv2.putText(frame, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2) # show the output frame cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF # if the `q` key was pressed, break from the loop if key == ord("q"): break # do a bit of cleanup cv2.destroyAllWindows() vs.stop()
這裡默認了已經具備python和DL的基礎,程式碼層面直接讀懂應該沒有問題的,就不費時說明了。
run
$ python detect_faces_video.py --prototxt deploy.prototxt.txt \
--model res10_300x300_ssd_iter_140000.caffemodel
總結
這裡給出一個一個比較友好的opencv人臉檢測器的例項。
OpenCV庫 中帶有更精確的人臉檢測器(與OpenCV的Haar級聯相比)。
更精確的OpenCV人臉檢測器是基於深度學習的,特別是利用ResNet檢測器(SSD)框架和ResNet作為基礎網路。
受益於Aleksandr Rybnikov和OpenCV的dnn模組的其他貢獻者。