【 ML 】Steepest Descent Iteration Procedure of TOA - Based Positioning Simulation
阿新 • • 發佈:2018-11-22
steepest descent algorithms are,
用函式表示為:
function g = grad_ml(X,x,r,sigma2) % ML gradient computation % -------------------------------- % g = grad_ml(X,x,r); % g = gradient vector % X = matrix for receiver positions % x = 2D position estimate % r = TOA measurement vector % sigma2 = noise variance vector % L = size(X,2); % number of receivers t1 = 0; t2 = 0; ds = sum((x*ones(1,L)-X).^2,1); ds = ds'; for i=1:L t1 = t1 + (1/sigma2(i))*(r(i)-ds(i)^(0.5))*(x(1)-X(1,i))/ds(i)^(0.5); t2 = t2 + (1/sigma2(i))*(r(i)-ds(i)^(0.5))*(x(2)-X(2,i))/ds(i)^(0.5); end g=-2.*[t1; t2];
首先還是先給出該方法的定位示意圖 :
下面分析均方根誤差rmse:
廢話不必多說,這個方法在信噪比為30dB時候的RMSE為223m和其他方法類似。