1. 程式人生 > >[Luogu P3193] [BZOJ 1009] [HNOI2008]GT考試

[Luogu P3193] [BZOJ 1009] [HNOI2008]GT考試

洛谷傳送門

BZOJ傳送門

題目描述

阿申準備報名參加 GT 考試,准考證號為 N N 位數 X 1 , X

2 X n ( 0 X i
9 ) X_1,X_2…X_n(0\le X_i\le9) ,他不希望准考證號上出現不吉利的數字。 他的不吉利數字 A 1
, A 2 A m ( 0 A i 9 ) A_1,A_2…A_m(0\le A_i\le 9)
M M 位,不出現是指 X 1 , X 2 X n X_1,X_2…X_n 中沒有恰好一段等於 A 1 , A 2 A m A_1,A_2…A_m A 1 A_1 X 1 X_1 可以為 0 0

輸入輸出格式

輸入格式:

第一行輸入 N , M , K N,M,K .接下來一行輸入 M M 位的數。

輸出格式:

阿申想知道不出現不吉利數字的號碼有多少種,輸出模 K K 取餘的結果。

輸入輸出樣例

輸入樣例#1:

4 3 100
111

輸出樣例#1:

81

說明

N 1 0 9 , M 20 , K 1000 N\leq10^9,M\leq20,K\leq1000

解題分析

看到 N 1 0 9 , M 20 N\le 10^9, M\le 20 , 大概就能猜出這玩意是個矩陣了。

所以用 K M P KMP A C AC 自動機搞出轉移邊, m a t [ 0 ] [ i ] mat[0][i] 表示在若干次操作後停留在 i i 號節點的方案數, 跑一邊矩陣快速冪即可。

程式碼如下:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <cctype>
#include <cstdlib>
#include <algorithm>
#define R register
#define IN inline
#define W while
#define ll long long
int MOD, root, cnt, n, m;
int fail[25], son[25][10];
char buf[25];
bool tag[25];
std::queue <int> q;
struct Matrix {ll mat[21][21];} base, unit, start;
IN Matrix operator * (const Matrix &x, const Matrix &y)
{
    Matrix ret;
    R int i, j, k;
    for (i = 0; i < 21; ++i)
    for (j = 0; j < 21; ++j)
    {
        ret.mat[i][j] = 0;
        for (k = 0; k < 21; ++k)
        ret.mat[i][j] += x.mat[i][k] * y.mat[k][j];
        ret.mat[i][j] %= MOD;
    }
    return ret;
}
Matrix fpow()
{
    Matrix ret = unit;
    W (n)
    {
        if (n & 1) ret = ret * base;
        base = base * base, n >>= 1;
    }
    return ret;
}
void insert()
{
    R int len = std::strlen(buf), now = root, id;
    for (R int i = 0; i < len; ++i)
    {
        id = buf[i] - '0';
        if (!son[now][id]) son[now][id] = ++cnt;
        now = son[now][id];
    }
    tag[now] = true;
}
void build()
{
    R int now = root;
    for (R int i = 0; i < 10; ++i) if (son[now][i]) q.push(son[now][i]);
    W (!q.empty())
    {
        now = q.front(); q.pop();
        for (R int i = 0; i < 10; ++i)
        {
            if (son[now][i])
            {
                q.push(son[now][i]);
                fail[son[now][i]] = son[fail[now]][i];
                tag[son[now][i]] |= tag[fail[son[now][i]]];
            }
            else son[now][i] = son[fail[now]][i];
        }
    }
    for (R int i = 0; i <= cnt; ++i)
    {
        for (R int j = 0; j < 10; ++j)
        if (!tag[son[i][j]]) base.mat[i][son[i][j]]++;
    }
    for (R int i = 0; i < 21; ++i) unit.mat[i][i] = 1;
    start.mat[0][0] = 1;
}
int main(void)
{
    scanf("%d%d%d", &n, &m, &MOD);
    scanf("%s", buf); insert(); build();
    int ans = 0;
    Matrix res = start * fpow();
    for (R int i = 0; i <= cnt; ++i) ans = (ans + res.mat[0][i]) % MOD;
    printf("%d", ans);
}