洛谷P3193 [HNOI2008]GT考試(dp 矩陣乘法)
阿新 • • 發佈:2019-02-14
span ans names log new %s code char s http
題意
題目鏈接
Sol
設\(f[i][j]\)表示枚舉到位置串的第i位,當前與未知串的第j位匹配,那麽我們只要保證在轉移的時候永遠不會匹配即可
預處理出已知串的每個位置加上某個字符後能轉移到的位置,矩陣快速冪優化一下
復雜度\(O(M^3 \log n)\)
#include<bits/stdc++.h> using namespace std; const int MAXN = 22; int N, M, mod, s[MAXN], trans[MAXN][10], p[MAXN], g[MAXN], base[MAXN]; char ss[MAXN]; template<typename A, typename B> inline void add2(A &x, B y) { if(x + y < 0) x = x + y + mod; else x = x + y >= mod ? x + y - mod : x + y; } int Lim; struct Ma { int m[MAXN][MAXN]; Ma() { memset(m, 0, sizeof(m)); } void init() { for(int i = 0; i <= Lim; i++) m[i][i] = 1; } Ma operator * (const Ma &rhs) const { Ma ans; for(int i = 0; i <= Lim; i++) for(int j = 0; j <= Lim; j++) { __int128 tmp = 0; for(int k = 0; k <= Lim; k++) tmp += 1ll * m[i][k] * rhs.m[k][j] % mod; ans.m[i][j] = tmp % mod; } return ans; } }f; void GetNxt() { int j = 0; for(int i = 0; i <= M; i++) { if(i > 1) { while(j && s[i] != s[j + 1]) j = p[j]; if(s[i] == s[j + 1]) j++; p[i] = j; } for(int t = 0; t <= 9; t++) { int k = i; while(k && t != s[k + 1]) k = p[k]; if(t == s[k + 1]) k++; trans[i][t] = k; } } } Ma MPow(Ma a, int p) { Ma base; base.init(); while(p) { if(p & 1) base = base * a; a = a * a; p >>= 1; } return base; } int main() { cin >> N >> M >> mod; Lim = M + 1; scanf("%s", ss + 1); for(int i = 1; i <= M; i++) s[i] = ss[i] - '0'; for(int i = 0; i <= 9; i++) g[i == s[1]]++; GetNxt(); for(int j = 0; j <= M; j++) for(int k = 0; k <= 9; k++) if(trans[j][k] != M) f.m[trans[j][k]][j]++; Ma tmp = MPow(f, N - 1); for(int i = 0; i <= Lim; i++) for(int j = 0; j <= Lim; j++) add2(base[i], 1ll * tmp.m[i][j] * g[j] % mod); int ans = 0; for(int i = 0; i <= M - 1; i++) add2(ans, base[i]); cout << ans; return 0; } /* 4 3 100 121 */
洛谷P3193 [HNOI2008]GT考試(dp 矩陣乘法)