tensorflow構造邏輯迴歸模型
阿新 • • 發佈:2018-11-27
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt import input_data mnist = input_data.read_data_sets('data/', one_hot=True) trainimg = mnist.train.images trainlabel = mnist.train.labels testimg = mnist.test.images testlabel = mnist.test.labels print("MNIST loaded") print(trainimg.shape) print(trainlabel.shape) print(testimg.shape) print(testlabel.shape) #print (trainimg) print(trainlabel[0]) x = tf.placeholder("float", [None, 784]) y = tf.placeholder("float", [None, 10]) # None is for infinite W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) # LOGISTIC REGRESSION MODEL邏輯迴歸模型 actv = tf.nn.softmax(tf.matmul(x, W) + b) # COST FUNCTION損失函式 cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(actv), reduction_indices=1)) # OPTIMIZER優化器 learning_rate = 0.01 optm = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # PREDICTION預測 pred = tf.equal(tf.argmax(actv, 1), tf.argmax(y, 1)) # ACCURACY精度 accr = tf.reduce_mean(tf.cast(pred, "float")) # INITIALIZER初始化 init = tf.global_variables_initializer() sess = tf.InteractiveSession() #定義超引數 training_epochs = 50 batch_size = 100 display_step = 5 # SESSION sess = tf.Session() sess.run(init) # MINI-BATCH LEARNING小批量梯度下降學習 for epoch in range(training_epochs): avg_cost = 0. num_batch = int(mnist.train.num_examples/batch_size) for i in range(num_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) sess.run(optm, feed_dict={x: batch_xs, y: batch_ys}) feeds = {x: batch_xs, y: batch_ys} avg_cost += sess.run(cost, feed_dict=feeds) / num_batch # DISPLAY if epoch % display_step == 0: feeds_train = {x: batch_xs, y: batch_ys} feeds_test = {x: mnist.test.images, y: mnist.test.labels} train_acc = sess.run(accr, feed_dict=feeds_train) test_acc = sess.run(accr, feed_dict=feeds_test) print("Epoch: %03d/%03d cost: %.9f train_acc: %.3f test_acc: %.3f" % (epoch, training_epochs, avg_cost, train_acc, test_acc)) print("DONE")