multi label loss function
阿新 • • 發佈:2018-12-02
基本思想還是轉化為多個二分類
https://github.com/keras-team/keras/issues/10371
For the multi-label classification, you can try tanh+hinge with {-1, 1} values in labels like (1, -1, -1, 1).
Or sigmoid + hamming loss with {0, 1} values in labels like (1, 0, 0, 1).
In my case, sigmoid + focal loss with {0, 1} values in labels like (1, 0, 0, 1) worked well.
You can check this paperhttps://arxiv.org/abs/1708.02002.
比如batch為32 sample的,8個多標籤輸出,可以等價看成32*8個sample的二分類問題,自然這32*8個sample正負樣本比很容易不均(如果每個sample只有1,2個標籤的話)。這是focal loss就可以發揮很大的作用了
https://www.kaggle.com/rejpalcz/focalloss-for-keras
class FocalLoss(nn.Module): def __init__(self, gamma=2): super().__init__() self.gamma = gamma def forward(self, input, target): if not (target.size() == input.size()): raise ValueError("Target size ({}) must be the same as input size ({})" .format(target.size(), input.size())) max_val = (-input).clamp(min=0) loss = input - input * target + max_val + \ ((-max_val).exp() + (-input - max_val).exp()).log() invprobs = F.logsigmoid(-input * (target * 2.0 - 1.0)) loss = (invprobs * self.gamma).exp() * loss return loss.sum(dim=1).mean()
focal loss參考https://zhuanlan.zhihu.com/p/32423092