ValueError: Unknown loss function
阿新 • • 發佈:2018-11-12
1. 問題分析
在使用 Keras 中的 load_model
函式重新載入模型的時,會出現如下的報錯
Traceback (most recent call last):
File "test_unet.py", line 79, in <module>
model = load_model(weight_path)
File "/usr/local/lib/python2.7/dist-packages/keras/models.py", line 274, in load_model
sample_weight_mode=sample_weight_mode)
File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py", line 636, in compile
loss_function = losses.get(loss)
File "/usr/local/lib/python2.7/dist-packages/keras/losses.py", line 122, in get
return deserialize(identifier)
File "/usr/local/lib/python2.7/dist-packages/keras/losses.py", line 114 , in deserialize
printable_module_name='loss function')
File "/usr/local/lib/python2.7/dist-packages/keras/utils/generic_utils.py", line 164, in deserialize_keras_object
':' + function_name)
ValueError: Unknown loss function:dice_coef_loss
可以看到函式發生錯誤的地方可以追溯到 load_model
位置,分析提醒可以發現,是因為 Keras 找不到名為 dice_coef_loss 的損失函式。這個損失函式是我在函式訓練過程中自定義的損失函式,具體如下
# parameter for loss function
smooth = 1.
# metric function and loss function
def dice_coef(y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def dice_coef_loss(y_true, y_pred):
return -dice_coef(y_true, y_pred)
在這裡我自定義了一個指標 dice_coef
和一個損失函式 dice_coef_loss
。因為使用 model.save(filepath)
得到的會儲存訓練的損失函式,但是這個損失函式在 Keras 中的 losses.py 是找不到的是,所以才會報這樣的錯。
2. 修改方法
首先可以看一下函式 load_model
的原始碼,在這裡只給出說明部分如下
def load_model(filepath, custom_objects=None, compile=True):
"""Loads a model saved via `save_model`.
# Arguments
filepath: String, path to the saved model.
custom_objects: Optional dictionary mapping names
(strings) to custom classes or functions to be
considered during deserialization.
compile: Boolean, whether to compile the model
after loading.
# Returns
A Keras model instance. If an optimizer was found
as part of the saved model, the model is already
compiled. Otherwise, the model is uncompiled and
a warning will be displayed. When `compile` is set
to False, the compilation is omitted without any
warning.
# Raises
ImportError: if h5py is not available.
ValueError: In case of an invalid savefile.
"""
其中的 custom_objects
是可選的字典,在反序列化過程中對映名稱(字串)到要考慮的自定義類或函式,所以可以直接通過字典來制定缺失的指標或者損失函式,如下
# parameter for loss function
smooth = 1.
# metric function and loss function
def dice_coef(y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def dice_coef_loss(y_true, y_pred):
return -dice_coef(y_true, y_pred)
# load model
weight_path = './weights.h5'
model = load_model(weight_path,custom_objects={'dice_coef_loss': dice_coef_loss,'dice_coef':dice_coef})
重點看上面程式碼的最後一行,通過字典指定我們自定義的函式(或許是一個指標,或許是一個損失函式)就可以解決上面的問題。
參考
[1] Bisgates Github https://github.com/keras-team/keras/issues/5916#issuecomment-300038263