迴歸模型與房價預測
阿新 • • 發佈:2018-12-06
from sklearn.datasets import load_boston boston = load_boston() boston.keys() print(boston.DESCR) boston.data.shape boston.feature_names import pandas as pd df = pd.DataFrame(boston.data) df [12] import matplotlib.pyplot as plt x = boston.data[:,5] y = boston.target plt.figure(figsize=(10,6)) plt.scatter(x,y) plt.plot(x,9*x-20,'r') plt.show() x.shape from sklearn.linear_model import LinearRegression lineR = LinearRegression() lineR.fit(x.reshape(-1,1),y) w = lineR.coef_ #斜率 b = lineR.intercept_ #截距 from sklearn.linear_model import LinearRegression lineR = LinearRegression() lineR.fit(boston.data,y) q = lineR.coef_ #斜率 d = lineR.intercept_ #截距\ print(q,d)
C:\Users\Administrator\AppData\Local\Programs\Python\Python36\python.exe C:/Users/Administrator/PycharmProjects/net14/fdsffds.py Boston House Prices dataset =========================== Notes ------ Data Set Characteristics: :Number of Instances: 506 :Number of Attributes: 13 numeric/categorical predictive :Median Value (attribute 14) is usually the target :Attribute Information (in order): - CRIM per capita crime rate by town - ZN proportion of residential land zoned for lots over 25,000 sq.ft. - INDUS proportion of non-retail business acres per town - CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) - NOX nitric oxides concentration (parts per 10 million) - RM average number of rooms per dwelling - AGE proportion of owner-occupied units built prior to 1940 - DIS weighted distances to five Boston employment centres - RAD index of accessibility to radial highways - TAX full-value property-tax rate per $10,000 - PTRATIO pupil-teacher ratio by town - B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town - LSTAT % lower status of the population - MEDV Median value of owner-occupied homes in $1000's :Missing Attribute Values: None :Creator: Harrison, D. and Rubinfeld, D.L. This is a copy of UCI ML housing dataset. http://archive.ics.uci.edu/ml/datasets/Housing This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University. The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics ...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter. The Boston house-price data has been used in many machine learning papers that address regression problems. **References** - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261. - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann. - many more! (see http://archive.ics.uci.edu/ml/datasets/Housing) [-1.07170557e-01 4.63952195e-02 2.08602395e-02 2.68856140e+00 -1.77957587e+01 3.80475246e+00 7.51061703e-04 -1.47575880e+00 3.05655038e-01 -1.23293463e-02 -9.53463555e-01 9.39251272e-03 -5.25466633e-01] 36.49110328036133 Process finished with exit code 0