1. 程式人生 > >AtCoder Regular Contest 081 F - Flip and Rectangles

AtCoder Regular Contest 081 F - Flip and Rectangles

題目傳送門:https://arc081.contest.atcoder.jp/tasks/arc081_d

題目大意:

給定一個\(n×m\)的棋盤,棋盤上有一些黑點和白點,每次你可以選擇一行或一列,將上面所有的顏色取反,問若干次操作後可以得到的最大全黑子矩陣面積

首先我們可以發現,對於一個\(2×2\)的子矩陣,如果其內部的黑點個數不是偶數個,則這個子矩陣不能全部變成黑點,因此我們可以將所有黑點權值設為1,白點設為0,每個\(2×2\)子矩陣的左上角記錄其內部的異或值

然後我們就可以隨便寫了……具體看程式碼吧……

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
    static char buf[1000000],*p1=buf,*p2=buf;
    return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
    int x=0,f=1; char ch=gc();
    for (;ch<'0'||ch>'9';ch=gc())   if (ch=='-')    f=-1;
    for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<3)+(x<<1)+ch-'0';
    return x*f;
}
inline int read(){
    int x=0,f=1; char ch=getchar();
    for (;ch<'0'||ch>'9';ch=getchar())  if (ch=='-')    f=-1;
    for (;ch>='0'&&ch<='9';ch=getchar())    x=(x<<3)+(x<<1)+ch-'0';
    return x*f;
}
inline void print(int x){
    if (x<0)    putchar('-'),x=-x;
    if (x>9)    print(x/10);
    putchar(x%10+'0');
}
const int N=2e3;
int v[N+10][N+10],Lf[N+10][N+10],Rg[N+10][N+10],Up[N+10][N+10];
int main(){
    int n=read(),m=read();
    for (int i=1;i<=n;i++){
        static char s[N+10];
        scanf("%s",s+1);
        for (int j=1;j<=m;j++)  v[i][j]=(s[j]=='#');
    }
    for (int i=1;i<=n;i++)  for (int j=1;j<=m;j++)  v[i][j]^=v[i+1][j]^v[i][j+1]^v[i+1][j+1];
    int Ans=max(n--,m--);
    for (int i=1;i<=n;i++){
        for (int j=1;j<=m;j++)  Lf[i][j]=v[i][j]?0:Lf[i][j-1]+1;
        for (int j=m;j>=1;j--)  Rg[i][j]=v[i][j]?0:Rg[i][j+1]+1;
    }
    memset(Lf[0],127,sizeof(Lf[0]));
    memset(Rg[0],127,sizeof(Rg[0]));
    for (int i=1;i<=n;i++){
        for (int j=1;j<=m;j++){
            if (v[i][j])    Up[i][j]=0,Lf[i][j]=Rg[i][j]=inf;
            else{
                Up[i][j]=Up[i-1][j]+1;
                Lf[i][j]=min(Lf[i][j],Lf[i-1][j]);
                Rg[i][j]=min(Rg[i][j],Rg[i-1][j]);
                Ans=max(Ans,(Up[i][j]+1)*(Lf[i][j]+Rg[i][j]));
            }
        }
    }
    printf("%d\n",Ans);
    return 0;
}