從方格左上角到右下角的走法
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
/* z我最開始只想用遞迴,後來不行,我就用下圖的記憶化儲存的遞迴方法,把子問題儲存起來,省的重複計算,結果還是說我時間複雜度太大
* int[][] arr = new int[m+1][n+1];
if(arr[m][n] != 0) {
return arr[m][n];
}
if( 1 == m) {
arr[m][n] = 1;
}else if( 1 == n){
arr[m][n] = 1;
}else {
arr[m][n] = uniquePaths(m - 1, n ) + uniquePaths(m , n - 1 );
}
return arr[m][n];*/
//後來想想,用自底向上的最優化子結構應該會比自頂向下要簡單一些,如圖所示,通過,並且和牛客網上的最優解法幾乎一致
int[][] arr = new int[m+1][n+1];
for(int i = 0 ; i <= m ; i ++) {
arr[i][1] = 1;
}
for(int j = 0 ; j <= n ; j ++) {
arr[1][j] = 1;
}
for(int i = 2 ; i <= m ; i ++) {
for(int j = 2 ;j <= n ; j ++) {
arr[i][j] = arr[i-1][j]+arr[i][j-1];
}
}
return arr[m][n];