基於TensorFlow影象分類實現
阿新 • • 發佈:2018-12-23
train.py
訓練集圖片檔名稱中存在型別即可。根據需分類型別修改# 訓練集生成和# 測試集生成程式碼塊中的讀取方式。
import os import numpy as np import tensorflow as tf from network import Network from datagenerator import ImageDataGenerator from datetime import datetime import glob from tensorflow.contrib.data import Iterator learning_rate = 1e-4 num_epochs = 1 # 迭代次數 batch_size = 50 dropout_rate = 0.5 num_classes = 5 # 類別數量 display_step = 5 filewriter_path = "tmp/tensorboard_test" # tensorboard檔案路徑 checkpoint_path = "tmp/checkpoints_test" # 模型和引數路徑 if not os.path.isdir(checkpoint_path): os.mkdir(checkpoint_path) train_image_path = 'train/' # 訓練集資料路徑 test_image_path = 'test/' # 測試集資料路徑 label_path = [] test_label = [] # 訓練集生成 image_path = np.array(glob.glob(train_image_path + '*.jpg')).tolist() for i in range(len(image_path)): if 'Bus' in image_path[i]: label_path.append(0) elif 'Microbus' in image_path[i]: label_path.append(1) elif 'Sedan' in image_path[i]: label_path.append(2) elif 'SUV' in image_path[i]: label_path.append(3) elif 'Truck' in image_path[i]: label_path.append(4) # 測試集生成 test_image = np.array(glob.glob(test_image_path + '*.jpg')).tolist() for i in range(len(test_image)): if 'Bus' in image_path[i]: test_label.append(0) elif 'Microbus' in image_path[i]: test_label.append(1) elif 'Sedan' in image_path[i]: test_label.append(2) elif 'SUV' in image_path[i]: test_label.append(3) elif 'Truck' in image_path[i]: test_label.append(4) # 呼叫圖片生成器,把訓練集圖片轉換成三維陣列 tr_data = ImageDataGenerator( images=image_path, labels=label_path, batch_size=batch_size, num_classes=num_classes) # 呼叫圖片生成器,把測試集圖片轉換成三維陣列 test_data = ImageDataGenerator( images=test_image, labels=test_label, batch_size=batch_size, num_classes=num_classes, shuffle=False) with tf.name_scope('input'): # 定義迭代器 iterator = Iterator.from_structure(tr_data.data.output_types, tr_data.data.output_shapes) training_initalize=iterator.make_initializer(tr_data.data) testing_initalize=iterator.make_initializer(test_data.data) # 定義每次迭代的資料 next_batch = iterator.get_next() x = tf.placeholder(tf.float32, [batch_size, 224, 224, 3]) y = tf.placeholder(tf.float32, [batch_size, num_classes]) keep_prob = tf.placeholder(tf.float32) # 圖片資料通過網路處理 model = Network(x, keep_prob, num_classes) # 執行整個網路圖 score = model.fc8 with tf.name_scope('loss'): # 損失函式 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=score, labels=y)) tf.summary.scalar('loss', loss) with tf.name_scope('optimizer'): # 優化器 train_op = tf.train.AdamOptimizer(learning_rate).minimize(loss) # 定義網路精確度 with tf.name_scope("accuracy"): correct_pred = tf.equal(tf.argmax(score, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) tf.summary.scalar('accuracy', accuracy) # 把精確度加入到Tensorboard merged_summary = tf.summary.merge_all() writer = tf.summary.FileWriter(filewriter_path) saver = tf.train.Saver() # 定義一代的迭代次數 train_batches_per_epoch = int(np.floor(tr_data.data_size / batch_size)) test_batches_per_epoch = int(np.floor(test_data.data_size / batch_size)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) #saver = tf.train.Saver() #saver.restore(sess, "./tmp/checkpoints_t18/model_epoch10.ckpt") # 把模型圖加入Tensorboard writer.add_graph(sess.graph) print("{} 訓練開始".format(datetime.now())) print("{} Tensorboard at --logdir {}".format(datetime.now(), filewriter_path)) # 迭代所有次數 for epoch in range(num_epochs): sess.run(training_initalize) print("{} 迭代{}次開始".format(datetime.now(), epoch + 1)) #開始訓練每一代 for step in range(train_batches_per_epoch): img_batch, label_batch = sess.run(next_batch) sess.run(train_op, feed_dict={x: img_batch, y: label_batch, keep_prob: dropout_rate}) if step % display_step == 0: s = sess.run(merged_summary, feed_dict={x: img_batch, y: label_batch, keep_prob: 1.}) writer.add_summary(s, epoch * train_batches_per_epoch + step) # 測試模型精確度 print("{} 測試精度".format(datetime.now())) sess.run(testing_initalize) test_acc = 0. test_count = 0 for _ in range(test_batches_per_epoch): img_batch, label_batch = sess.run(next_batch) acc = sess.run(accuracy, feed_dict={x: img_batch, y: label_batch, keep_prob: 1.0}) test_acc += acc test_count += 1 test_acc /= test_count print("{} 精度 = {:.4f}".format(datetime.now(), test_acc)) # 把訓練好的模型儲存起來 print("{} 儲存模型".format(datetime.now())) checkpoint_name = os.path.join(checkpoint_path, 'model_epoch' + str(epoch + 1) + '.ckpt') save_path = saver.save(sess, checkpoint_name) print("{} 迭代{}次結束".format(datetime.now(), epoch + 1), save_path)
network.py
import tensorflow as tf import numpy as np class Network(object): def __init__(self, x, keep_prob, num_classes): self.X = x self.NUM_CLASSES = num_classes self.KEEP_PROB = keep_prob self.create() def create(self): #卷積層1 conv1_1 = conv(self.X, 9, 9, 128, 4, 4, padding='VALID', name='conv1_1') pool1 = max_pool(conv1_1, 2, 2, 2, 2, padding='SAME', name='pool1') # 卷積層2 conv2_1 = conv(pool1, 4, 4, 256, 1, 1, padding='VALID', name='conv2_1') pool2 = max_pool(conv2_1, 2, 2, 2, 2, padding='SAME', name='pool2') # 卷積層3 conv3_1 = conv(pool2, 3, 3, 512, 1, 1, padding='SAME', name='conv3_1') conv3_2 = conv(conv3_1, 3, 3, 512, 1, 1, padding='SAME', name='conv3_2') pool3 = max_pool(conv3_2, 2, 2, 2, 2, padding='SAME', name='pool3') # 卷積層4 conv4_1 = conv(pool3, 3, 3, 256, 1, 1, padding='SAME', name='conv4_1') #pool4 = max_pool(conv4_2, 2, 2, 2, 2, padding='SAME', name='pool4') flattened = tf.reshape(conv4_1, [-1, 6*6*256]) # 全連結6 fc6 = fc(flattened, 6*6*256, 4096, name='fc6') dropout6 = dropout(fc6, self.KEEP_PROB) # 全連結7 fc7 = fc(dropout6, 4096, 4096, name='fc7') dropout7 = dropout(fc7, self.KEEP_PROB) # 全連結8 self.fc8 = fc(dropout7, 4096, self.NUM_CLASSES, name='fc8', relu=False) def conv(x, filter_height, filter_width, num_filters, stride_y, stride_x, name, padding='SAME'): input_channels = int(x.get_shape()[-1]) convolve = lambda i, k: tf.nn.conv2d(i, k, strides=[1, stride_y, stride_x, 1], padding=padding) with tf.variable_scope(name) as scope: weights = tf.get_variable('weights', shape=[filter_height, filter_width, input_channels, num_filters]) biases = tf.get_variable('biases', shape=[num_filters]) conv = convolve(x, weights) bias = tf.reshape(tf.nn.bias_add(conv, biases), tf.shape(conv)) relu = tf.nn.relu(bias, name=scope.name) return relu def fc(x, num_in, num_out, name, relu=True): with tf.variable_scope(name) as scope: weights = tf.get_variable('weights', shape=[num_in, num_out], trainable=True) biases = tf.get_variable('biases', [num_out], trainable=True) act = tf.nn.xw_plus_b(x, weights, biases, name=scope.name) if relu: relu = tf.nn.relu(act) return relu else: return act def max_pool(x, filter_height, filter_width, stride_y, stride_x, name, padding='SAME'): return tf.nn.max_pool(x, ksize=[1, filter_height, filter_width, 1], strides=[1, stride_y, stride_x, 1], padding=padding, name=name) def lrn(x, radius, alpha, beta, name, bias=1.0): return tf.nn.local_response_normalization(x, depth_radius=radius, alpha=alpha, beta=beta, bias=bias, name=name) def dropout(x, keep_prob): return tf.nn.dropout(x, keep_prob)
datagenerator.py
import tensorflow as tf import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework.ops import convert_to_tensor from tensorflow.contrib.data import Dataset VGG_MEAN = tf.constant([123.68, 116.779, 103.939], dtype=tf.float32) # 把圖片資料轉化為三維矩陣 class ImageDataGenerator(object): def __init__(self, images, labels, batch_size, num_classes, shuffle=True): self.img_paths = images self.labels = labels self.num_classes = num_classes self.data_size = len(self.labels) self.pointer = 0 if shuffle: self._shuffle_lists() self.img_paths = convert_to_tensor(self.img_paths, dtype=dtypes.string) self.labels = convert_to_tensor(self.labels, dtype=dtypes.int32) data = Dataset.from_tensor_slices((self.img_paths, self.labels)) data = data.map(self._parse_function_train, num_threads=8, output_buffer_size=100 * batch_size) data = data.batch(batch_size) self.data = data # 打亂圖片順序 def _shuffle_lists(self): path = self.img_paths labels = self.labels permutation = np.random.permutation(self.data_size) self.img_paths = [] self.labels = [] for i in permutation: self.img_paths.append(path[i]) self.labels.append(labels[i]) # 把圖片生成三維陣列,以及把標籤轉化為向量 def _parse_function_train(self, filename, label): one_hot = tf.one_hot(label, self.num_classes) img_string = tf.read_file(filename) img_decoded = tf.image.decode_png(img_string, channels=3) img_resized = tf.image.resize_images(img_decoded, [224, 224]) img_centered = tf.subtract(img_resized, VGG_MEAN) img_bgr = img_centered[:, :, ::-1] return img_bgr, one_hot
validate_image.py
import tensorflow as tf
from network import Network
import matplotlib.pyplot as plt
import numpy as np
import glob
from tensorflow.python.framework import dtypes
from tensorflow.python.framework.ops import convert_to_tensor
from tensorflow.contrib.data import Dataset
from tensorflow.contrib.data import Iterator
VGG_MEAN = tf.constant([123.68, 116.779, 103.939], dtype=tf.float32)
class_name = ['Bus', 'Microbus', 'Sedan', 'SUV', 'Truck']
validate_image_path = 'validate/' # 指定驗證集資料路徑(根據實際情況指定驗證資料集的路徑)
x = tf.placeholder(tf.float32, [1, 224, 224, 3])
model = Network(x, 1, 5)
score = tf.nn.softmax(model.fc8)
max = tf.arg_max(score, 1)
t_num = 0
f_num = 0
image_path = np.array(glob.glob(validate_image_path + '*.jpg')).tolist()
fo = open("false.txt", "w")
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(sess, "./tmp/checkpoints_t16/model_epoch7.ckpt")
for i in range(len(image_path)):
img_string = tf.read_file(image_path[i])
img_decoded = tf.image.decode_png(img_string, channels=3)
img_resized = tf.image.resize_images(img_decoded, [224, 224])
img_resized = img_resized[:, :, ::-1]
img_resized = np.asarray(img_resized.eval(), dtype='uint8')
img_resized = img_resized.reshape((1, 224, 224, 3))
prob = sess.run(max, feed_dict={x: img_resized})[0]
t = -1
if 'Bus' in image_path[i]:
t = 0
elif 'Microbus' in image_path[i]:
t = 1
elif 'Sedan' in image_path[i]:
t = 2
elif 'SUV' in image_path[i]:
t = 3
elif 'Truck' in image_path[i]:
t = 4
if t == prob:
t_num += 1
else:
f_num += 1
fo.write(image_path[i] + '_Prediction:' + str(class_name[prob]) + '\n')
print(t_num/(t_num + f_num))