windows + CUDA + Anaconda + tensorflow + PyCharm
阿新 • • 發佈:2018-12-30
-- 執行結果如下(console處的輸出資訊):import tensorflow as tf import numpy as np def linear_test(): # Model parameters print("linear_test") W = tf.Variable([.3], tf.float32) b = tf.Variable([-.3], tf.float32) # Model input and output x = tf.placeholder(tf.float32) linear_model = W * x + b y = tf.placeholder(tf.float32) # loss loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares # optimizer optimizer = tf.train.GradientDescentOptimizer(0.01) train = optimizer.minimize(loss) # training data x_train = [1, 2, 3, 4] y_train = [0, -1, -2, -3] # training loop init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) # reset values to wrong for i in range(1000): sess.run(train, {x: x_train, y: y_train}) # evaluate training accuracy curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x: x_train, y: y_train}) print("W: %s b: %s loss: %s" % (curr_W, curr_b, curr_loss)) def contrib_test(): print("contrib_test") # Declare list of features. We only have one real-valued feature. There are many # other types of columns that are more complicated and useful. features = [tf.contrib.layers.real_valued_column("x", dimension=1)] # An estimator is the front end to invoke training (fitting) and evaluation # (inference). There are many predefined types like linear regression, # logistic regression, linear classification, logistic classification, and # many neural network classifiers and regressors. The following code # provides an estimator that does linear regression. estimator = tf.contrib.learn.LinearRegressor(feature_columns=features) # TensorFlow provides many helper methods to read and set up data sets. # Here we use `numpy_input_fn`. We have to tell the function how many batches # of data (num_epochs) we want and how big each batch should be. x = np.array([1., 2., 3., 4.]) y = np.array([0., -1., -2., -3.]) input_fn = tf.contrib.learn.io.numpy_input_fn({"x": x}, y, batch_size=4, num_epochs=1000) # We can invoke 1000 training steps by invoking the `fit` method and passing the # training data set. estimator.fit(input_fn=input_fn, steps=1000) # Here we evaluate how well our model did. In a real example, we would want # to use a separate validation and testing data set to avoid overfitting. print(estimator.evaluate(input_fn=input_fn)) # Declare list of features, we only have one real-valued feature def model(features, labels, mode): # Build a linear model and predict values W = tf.get_variable("W", [1], dtype=tf.float64) b = tf.get_variable("b", [1], dtype=tf.float64) y = W*features['x'] + b # Loss sub-graph loss = tf.reduce_sum(tf.square(y - labels)) # Training sub-graph global_step = tf.train.get_global_step() optimizer = tf.train.GradientDescentOptimizer(0.01) train = tf.group(optimizer.minimize(loss), tf.assign_add(global_step, 1)) # ModelFnOps connects subgraphs we built to the # appropriate functionality. return tf.contrib.learn.ModelFnOps( mode=mode, predictions=y, loss=loss, train_op=train) def custom_model(): print("custom_model") estimator = tf.contrib.learn.Estimator(model_fn=model) # define our data set x = np.array([1., 2., 3., 4.]) y = np.array([0., -1., -2., -3.]) input_fn = tf.contrib.learn.io.numpy_input_fn({"x": x}, y, 4, num_epochs=1000) # train estimator.fit(input_fn=input_fn, steps=1000) # evaluate our model print(estimator.evaluate(input_fn=input_fn, steps=10)) def linear2(): print("linear2") # 使用 NumPy 生成假資料(phony data), 總共 100 個點. x_data = np.float32(np.random.rand(2, 100)) # 隨機輸入 y_data = np.dot([0.100, 0.200], x_data) + 0.300 # 構造一個線性模型 # b = tf.Variable(tf.zeros([1])) W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0)) y = tf.matmul(W, x_data) + b # 最小化方差 loss = tf.reduce_mean(tf.square(y - y_data)) optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) # 初始化變數 init = tf.global_variables_initializer() # 啟動圖 (graph) #with tf.Session() as sess: # with tf.device("/gpu:1"): # matrix1 = tf.constant([[3., 3.]]) # matrix2 = tf.constant([[2.], [2.]]) # product = tf.matmul(matrix1, matrix2) sess = tf.Session() sess.run(init) # 擬合平面 for step in range(0, 201): sess.run(train) if step % 20 == 0: print(step, sess.run(W), sess.run(b)) if __name__ == '__main__': linear_test() contrib_test() custom_model() linear2()