1. 程式人生 > >opencv3之視訊實時檢測人臉區域

opencv3之視訊實時檢測人臉區域

視訊實時檢測人臉區域

這篇博文也是有參考別人的,並不是完全由自己寫出來的,然後標題也寫了是依賴opencv3.4的版本的程式碼。

opencv3.4有訓練好的人臉識別的模型檔案,這2個檔案可以去opencv的安裝目錄裡找到。最後一篇我會寫怎麼自己訓練出一個人臉識別模型檔案,這裡不多說了。


廢話不多說,直接上程式碼

#include "opencv2/objdetect.hpp"
#include "opencv2/videoio.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"


#include <iostream>
#include <stdio.h>


using namespace std;
using namespace cv;


void detectAndDisplay(Mat frame);




String face_cascade_name, eyes_cascade_name;
CascadeClassifier face_cascade;
CascadeClassifier eyes_cascade;
String window_name = "Capture - Face detection";




int main(int argc, const char** argv)
{

face_cascade_name = "haarcascade_frontalface_alt.xml";
eyes_cascade_name = "haarcascade_eye_tree_eyeglasses.xml";
VideoCapture capture;
Mat frame;


//-- 1. Load the cascades
if (!face_cascade.load(face_cascade_name)){ printf("--(!)Error loading face cascade\n"); return -1; };
if (!eyes_cascade.load(eyes_cascade_name)){ printf("--(!)Error loading eyes cascade\n"); return -1; };


//-- 2. Read the video stream
capture.open(0);
if (!capture.isOpened()) { printf("--(!)Error opening video capture\n"); return -1; }


while (capture.read(frame))
{
if (frame.empty())
{
printf(" --(!) No captured frame -- Break!");
break;
}


//-- 3. Apply the classifier to the frame
detectAndDisplay(frame);


char c = (char)waitKey(10);
if (c == 27) { break; } // escape
}
return 0;
}




void detectAndDisplay(Mat frame)
{
std::vector<Rect> faces;
Mat frame_gray;


cvtColor(frame, frame_gray, COLOR_BGR2GRAY);
equalizeHist(frame_gray, frame_gray);


//-- Detect faces
face_cascade.detectMultiScale(frame_gray, faces, 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));


for (size_t i = 0; i < faces.size(); i++)
{
Point center(faces[i].x + faces[i].width / 2, faces[i].y + faces[i].height / 2);
ellipse(frame, center, Size(faces[i].width / 2, faces[i].height / 2), 0, 0, 360, Scalar(255, 0, 255), 4, 8, 0);


Mat faceROI = frame_gray(faces[i]);
std::vector<Rect> eyes;


//-- In each face, detect eyes
eyes_cascade.detectMultiScale(faceROI, eyes, 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));


for (size_t j = 0; j < eyes.size(); j++)
{
Point eye_center(faces[i].x + eyes[j].x + eyes[j].width / 2, faces[i].y + eyes[j].y + eyes[j].height / 2);
int radius = cvRound((eyes[j].width + eyes[j].height)*0.25);
circle(frame, eye_center, radius, Scalar(255, 0, 0), 4, 8, 0);
}
}
//-- Show what you got
imshow(window_name, frame);

}

由於沒有儲存好參考連結,這裡請原諒我沒有貼出來啦吐舌頭