Tensorflow目標檢測--為視訊中的物品打上標籤
阿新 • • 發佈:2019-01-07
視訊檢測
此程式基於Tensorflow object detection API。
視訊演示:https://www.bilibili.com/video/av32418677/?p=2
# By Bend_Function
# https://space.bilibili.com/275177832
# 可以放在任何資料夾下執行(前提正確配置API[環境變數])
# 輸出視訊沒有聲音,pr可解決一切
import numpy as np
import os
import sys
import tensorflow as tf
import cv2
import time
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
start = time.time()
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
cv2.setUseOptimized(True) # 加速cv
# This is needed since the notebook is stored in the object_detection folder.
sys. path.append("..")
# 可能要改的內容
######################################################
PATH_TO_CKPT = 'model\\ssd_mobilenet_v1_graph.pb' # 模型及標籤地址
PATH_TO_LABELS = 'model\\mscoco_label_map.pbtxt'
video_PATH = "test_video\\cycling.mp4" # 要檢測的視訊
out_PATH = "OUTPUT\\out_cycling1.mp4" # 輸出地址(帶輸出檔名)
NUM_CLASSES = 90 # 檢測物件個數
fourcc = cv2.VideoWriter_fourcc(*'MPEG') # 編碼器型別(可選)
# 編碼器: DIVX , XVID , MJPG ,MPEG, X264 , WMV1 , WMV2
# 如果發生寫視訊錯誤很可能是編碼器出現問題
######################################################
# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# 讀取視訊
video_cap = cv2.VideoCapture(video_PATH)
fps = int(video_cap.get(cv2.CAP_PROP_FPS)) # 幀率
width = int(video_cap.get(3)) # 視訊長,寬
hight = int(video_cap.get(4))
videoWriter = cv2.VideoWriter(out_PATH, fourcc, fps, (width, hight))
config = tf.ConfigProto()
config.gpu_options.allow_growth = True # 減小視訊記憶體佔用
with detection_graph.as_default():
with tf.Session(graph=detection_graph, config=config) as sess:
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
num = 0
while True:
ret, frame = video_cap.read()
if ret == False: # 沒檢測到就跳出
break
num += 1
print(num) # 輸出檢測到第幾幀了
# print(num/fps) # 檢測到第幾秒了
image_np = frame
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=4)
# 寫視訊
videoWriter.write(image_np)
videoWriter.release()
end = time.time()
print("Execution Time: ", end - start)