1. 程式人生 > >Discovering Data Science with Romeo Kienzler

Discovering Data Science with Romeo Kienzler

Read Romeo’s tutorial series on deep learning Romeo presents at Jazoon Tech Days about using deep learning on IoT data in Apache Spark. In this video: Romeo Kienzler, Chief Data Scientist, IBM Romeo presents at Jazoon Tech Days, a conference on AI for developers, and gives an in-depth technical introduction to machine learning, neural networks,...

相關推薦

Discovering Data Science with Romeo Kienzler

Read Romeo’s tutorial series on deep learning Romeo presents at Jazoon Tech Days about using deep learning on IoT data in Apache Spark. In this video: Rome

Discovering Data Science: A Chronicle

EXPLORATORY DATA ANALYSISLike any set of metrics, pitcher value metrics based on a small number of observations can drastically impact their accuracy. As a

Predictive Data Science with Amazon SageMaker and a Data Lake on AWS

This Quick Start builds a data lake environment for building, training, and deploying machine learning (ML) models with Amazon SageMaker on the Am

R語言讀取資料(Practical Data Science with R 第二章)

1、用R語言讀取檔案中的資料 1.1、用R語言讀取結構化資料 以University of California Irvine Machine Learning Repository (http://archive.ics.uci.edu/ml/)的car資料為例: u

Cleaning and Prepping Data with Python for Data Science

Check Your Data … QuicklyThe first thing you want to do when you get a new dataset, is to quickly to verify the contents with the .head() method.import pan

Dealing with Noisy Data in Data Science

We were working on a dataset for our data science project, where we saw that our model was not performing up to the mark. While performance is a subjective

Wikipedia Data Science: Working with the World’s Largest Encyclopedia

Finding and Downloading Data ProgrammaticallyThe first step in any data science project is accessing your data! While we could make individual requests to

How to Get Your First Data Science Job: Interview with Michael Galarnyk

Knowing data science is great, but getting a job at it can be quite a challenge. Today I have a special guest and he is going to reveal the secret you

Building our data science platform with Spark and Jupyter

Testing while documentingAll critical paths of the code are covered with Integration Tests using Python Doctest framework, enabling up-to-date and accurate

Bioconductor(Bioconductor for Genomic Data Science教程)

mic arc nbsp nba for hub 教程 enc 文件 Bioconductor for Genomic Data Science ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_genbank/Bacteri

Data Analysis with Python : Exercise- Titantic Survivor Analysis | packtpub.com

.com pub nal kaggle out conda anti vivo python kaggle-titantic, from: https://www.youtube.com/watch?v=siEPqQsPLKA install matplotlib: con

SDP(0):Streaming-Data-Processor - Data Processing with Akka-Stream

數據庫管理 新的 集成 部分 ont lock 感覺 sharding 數據源 再有兩天就進入2018了,想想還是要準備一下明年的工作方向。回想當初開始學習函數式編程時的主要目的是想設計一套標準API給那些習慣了OOP方式開發商業應用軟件的程序員們,使他們能用一種接近

在博客園使用LaTex編輯論文級別data science文章

博客園 Go 效果 公式 過程 第一個 基本 CI 一行 第一個例子我們看看在行文過程中,我們需要一段公式: $p={12\over q}$ ,隨後我們觀察效果。再來另外一個使用\ (來做分界符的行內\(p={12\over q}\)latex公式 在下面的例子,我們有一大

Building Data Models with PowerPivot_進階篇2

5.1 使用 Userelationship 建立兩表之間的多個關係 USERELATIONSHIP(多端,一端) Measure_送貨數量 = CALCULATE(SUM([數量])),USERELATIONSHIP('銷售記錄'[實際送貨日期],'日曆年'[日期]) 5.2

Building Data Models with PowerPivot_進階篇

Building Data Models with PowerPivot_進階篇 2.3 使用連結回標進行RFM分析 R Recent近度 MIN([近度]); [近度]=TODAY()-[下單日期] 3.1 使用高階DAX函式 高階聚合函式SUMX SUMX函式

Change the default MySQL data directory with SELinux enabled

轉載:https://rmohan.com/?p=4605   Change the default MySQL data directory with SELinux enabled This is a short article that explains how you

Python data science two pandas basic

from pandas import Series import pandas as pd s=Series([1,2,'ww','tt']) s #series可以自定義索引 s2=Series(['wangxing','man',24],index=['name','sex','

Python data science thd numpy basic

Numpy最重要的一個特 (ndarray)點是其N維陣列物件,該物件是一個快速而靈活地大資料集容器 建立ndarray建立陣列最簡單的方法就是使用array函式,它接收一切陣列性的物件,然後產生一個新的含有傳入陣列的NumPy物件 data=[2,3,4] arr1=np.arra

Python data science one

在常見的資料探勘中,dirty data的內容: 缺失值,異常值,不一致的值,重複的資料以及含有特殊符號(如#,*,等) 異常值往往十分的具有價值,重視異常值的出現,分析其產生的原因,常常成為發現問題而進而改進決策的契機 異常值分析:1st進行簡單的統計量分析,最常用的是最大值,最小值,

kaggle 2018 data science bowl 細胞核分割學習筆記

一、 獲獎者解決方案 1. 第一名解決方案(Unet 0.631) 主要的貢獻 targets: 預測touching borders,將問題作為instance分割 loss function:組合交叉熵跟soft dice loss,避免pixel imbalance問題