caffe中的卷積層原始碼筆記
卷積層的實現在conv_layer.hpp和conv_layer.cpp,在於其中的ConvolutionLayer類,繼承於BaseConvolutionLayer類。
卷積主要的處理過程是將影象bottom[i]->cpu_data()+j * this->bottom_dim_進行im2col處理,轉化成一個新的矩陣col_buff,然後用權值矩陣weights
其中bottom_dim_表示一個輸入blob內一幅影象的大小。
以下的分析基於影象每層通道均為2維
設輸入影象的某層通道經過im2col轉化後,得到矩陣X,W、b隨機值取決於網路配置檔案prototxt裡關於卷積層的定義
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
optional FillerParameter weight_filler = 7; // The filler for the weight
optional FillerParameter bias_filler = 8; // The filler for the bias
Y為矩陣相乘後的結果矩陣。
dY 表示
dX 表示
dW 表示
db 表示
前向傳播:卷積的過程可以表示為
反向傳播:
前向傳播
總的處理流程是分別對num_個影象依次處理。
圖片表示的是一個圖片的前向傳播中的Y=W*X,分group_組進行,假設這裡group_==3,就要進行3次乘積。箭頭表示處理每一組乘積時指標指向的位置,所以3個指標(分別指向W中的某一部分、X中的某一部分、Y中的某一部分)要分別移動group_-1(這裡為3-1=2)次
有一個細節是如果輸入影象的通道進行1*1卷積,即卷積核大小1*1,no
padding ,stride=1,那麼跳過了im2col處理,反向傳播時跳過了col2im處理
反向傳播
conv_layer.cpp
compute_output_shape()用於計算輸出影象通道內每一維度的大小,可以理解為輸出影象每一通道上的寬和高。
const int output_dim = (input_dim + 2 * pad_data[i] - kernel_extent)
/ stride_data[i] + 1;
this->output_shape_.push_back(output_dim);
儲存到output_shape_裡面。
Forward_cpu()、Backward_cpu()實現前向傳播和反向傳播演算法;
conv_layer.cpp原始碼:
#include <vector>
#include "caffe/layers/conv_layer.hpp"
namespace caffe {
template <typename Dtype>
void ConvolutionLayer<Dtype>::compute_output_shape() {
const int* kernel_shape_data = this->kernel_shape_.cpu_data();
const int* stride_data = this->stride_.cpu_data();
const int* pad_data = this->pad_.cpu_data();
const int* dilation_data = this->dilation_.cpu_data();
this->output_shape_.clear();
for (int i = 0; i < this->num_spatial_axes_; ++i) {
// i + 1 to skip channel axis
const int input_dim = this->input_shape(i + 1);
const int kernel_extent = dilation_data[i] * (kernel_shape_data[i] - 1) + 1;
const int output_dim = (input_dim + 2 * pad_data[i] - kernel_extent)
/ stride_data[i] + 1;
this->output_shape_.push_back(output_dim);
}
}
template <typename Dtype>
void ConvolutionLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* weight = this->blobs_[0]->cpu_data();
for (int i = 0; i < bottom.size(); ++i) {
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* top_data = top[i]->mutable_cpu_data();
for (int n = 0; n < this->num_; ++n) {
this->forward_cpu_gemm(bottom_data + n * this->bottom_dim_, weight,
top_data + n * this->top_dim_);//實現Y=w*X,X為影象轉化後的矩陣,w為引數,Y為結果矩陣
if (this->bias_term_) {
const Dtype* bias = this->blobs_[1]->cpu_data();
this->forward_cpu_bias(top_data + n * this->top_dim_, bias);//Y=Y+b
}
}
}
}
template <typename Dtype>
void ConvolutionLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
const Dtype* weight = this->blobs_[0]->cpu_data();
Dtype* weight_diff = this->blobs_[0]->mutable_cpu_diff();
for (int i = 0; i < top.size(); ++i) {
const Dtype* top_diff = top[i]->cpu_diff();
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* bottom_diff = bottom[i]->mutable_cpu_diff();
// Bias gradient, if necessary.
if (this->bias_term_ && this->param_propagate_down_[1])
{
Dtype* bias_diff = this->blobs_[1]->mutable_cpu_diff();
for (int n = 0; n < this->num_; ++n)//累加n個圖片的db
{
this->backward_cpu_bias(bias_diff, top_diff + n * this->top_dim_);// 對於每個圖片,db=dy,這裡累加db到bias_diff。
}
}
if (this->param_propagate_down_[0] || propagate_down[i])
{
for (int n = 0; n < this->num_; ++n)
{
// gradient w.r.t. weight. Note that we will accumulate diffs.
if (this->param_propagate_down_[0])
{
this->weight_cpu_gemm(bottom_data + n * this->bottom_dim_,
top_diff + n * this->top_dim_, weight_diff);//對於每個圖片,dW=dY * X^{T},這裡累加dW
}
// gradient w.r.t. bottom data, if necessary.
if (propagate_down[i])
{
this->backward_cpu_gemm(top_diff + n * this->top_dim_, weight,
bottom_diff + n * this->bottom_dim_);//dX=W^{T} *dY,分num_個圖片分別進行,不像db和dW一樣累加。
}
}
}
}
}
#ifdef CPU_ONLY
STUB_GPU(ConvolutionLayer);
#endif
INSTANTIATE_CLASS(ConvolutionLayer);
} // namespace caffe
base_conv_layer.cpp
LayerSetUp()和Reshape()函式的作用主要是為了計算一些後面用到的引數,簡單地說就是預處理。
其中Reshape 函式,根據ConvolutionLayer或DeconvolutionLayer類的compute_output_shape()函式求出的輸出圖片的形狀來對top進行賦值
,剩下的幾個函式分別實現了前向傳播中矩陣的乘法運算、Y=Y+b運算、反向傳播中求解dX、dW、db。
base_conv_layer.cpp原始碼:
#include <algorithm>
#include <vector>
#include "caffe/filler.hpp"
#include "caffe/layers/base_conv_layer.hpp"
#include "caffe/util/im2col.hpp"
#include "caffe/util/math_functions.hpp"
namespace caffe {
/*
LayerSetUp和Reshape函式的作用主要是為了計算一些後面用到的引數,簡單地說就是預處理。
其中Reshape 函式,根據ConvolutionLayer或DeconvolutionLayer類的compute_output_shape()函式求
出的輸出圖片的形狀來對top進行賦值
*/
template <typename Dtype>
void BaseConvolutionLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
// Configure the kernel size, padding, stride, and inputs.
ConvolutionParameter conv_param = this->layer_param_.convolution_param();
force_nd_im2col_ = conv_param.force_nd_im2col();//是否強制使用n維通用卷積
channel_axis_ = bottom[0]->CanonicalAxisIndex(conv_param.axis());
const int first_spatial_axis = channel_axis_ + 1;
const int num_axes = bottom[0]->num_axes();//return shape_.size();返回輸入層的維數
num_spatial_axes_ = num_axes - first_spatial_axis;//每層通道上的維數
CHECK_GE(num_spatial_axes_, 0);
vector<int> bottom_dim_blob_shape(1, num_spatial_axes_ + 1);
vector<int> spatial_dim_blob_shape(1, std::max(num_spatial_axes_, 1));
// Setup filter kernel dimensions (kernel_shape_).
// 計算卷積核的形狀
kernel_shape_.Reshape(spatial_dim_blob_shape);
int* kernel_shape_data = kernel_shape_.mutable_cpu_data();
if (conv_param.has_kernel_h() || conv_param.has_kernel_w())
{
CHECK_EQ(num_spatial_axes_, 2)
<< "kernel_h & kernel_w can only be used for 2D convolution.";
CHECK_EQ(0, conv_param.kernel_size_size())
<< "Either kernel_size or kernel_h/w should be specified; not both.";
kernel_shape_data[0] = conv_param.kernel_h();
kernel_shape_data[1] = conv_param.kernel_w();
}
else
{
const int num_kernel_dims = conv_param.kernel_size_size();
CHECK(num_kernel_dims == 1 || num_kernel_dims == num_spatial_axes_)
<< "kernel_size must be specified once, or once per spatial dimension "
<< "(kernel_size specified " << num_kernel_dims << " times; "
<< num_spatial_axes_ << " spatial dims).";
for (int i = 0; i < num_spatial_axes_; ++i)
{
kernel_shape_data[i] =
conv_param.kernel_size((num_kernel_dims == 1) ? 0 : i);
}
}
for (int i = 0; i < num_spatial_axes_; ++i)
{
CHECK_GT(kernel_shape_data[i], 0) << "Filter dimensions must be nonzero.";
}
/* 計算步長相關的引數 */
// Setup stride dimensions (stride_).
stride_.Reshape(spatial_dim_blob_shape);
int* stride_data = stride_.mutable_cpu_data();
if (conv_param.has_stride_h() || conv_param.has_stride_w())
{
CHECK_EQ(num_spatial_axes_, 2)
<< "stride_h & stride_w can only be used for 2D convolution.";
CHECK_EQ(0, conv_param.stride_size())
<< "Either stride or stride_h/w should be specified; not both.";
stride_data[0] = conv_param.stride_h();
stride_data[1] = conv_param.stride_w();
}
else
{
const int num_stride_dims = conv_param.stride_size();
CHECK(num_stride_dims == 0 || num_stride_dims == 1 ||
num_stride_dims == num_spatial_axes_)
<< "stride must be specified once, or once per spatial dimension "
<< "(stride specified " << num_stride_dims << " times; "
<< num_spatial_axes_ << " spatial dims).";
const int kDefaultStride = 1;
for (int i = 0; i < num_spatial_axes_; ++i)
{
stride_data[i] = (num_stride_dims == 0) ? kDefaultStride :
conv_param.stride((num_stride_dims == 1) ? 0 : i);
CHECK_GT(stride_data[i], 0) << "Stride dimensions must be nonzero.";
}
}
/* 計算pad值 */
// Setup pad dimensions (pad_).
pad_.Reshape(spatial_dim_blob_shape);
int* pad_data = pad_.mutable_cpu_data();
if (conv_param.has_pad_h() || conv_param.has_pad_w())
{
CHECK_EQ(num_spatial_axes_, 2)
<< "pad_h & pad_w can only be used for 2D convolution.";
CHECK_EQ(0, conv_param.pad_size())
<< "Either pad or pad_h/w should be specified; not both.";
pad_data[0] = conv_param.pad_h();
pad_data[1] = conv_param.pad_w();
}
else
{
const int num_pad_dims = conv_param.pad_size();
CHECK(num_pad_dims == 0 || num_pad_dims == 1 ||
num_pad_dims == num_spatial_axes_)
<< "pad must be specified once, or once per spatial dimension "
<< "(pad specified " << num_pad_dims << " times; "
<< num_spatial_axes_ << " spatial dims).";
const int kDefaultPad = 0;
for (int i = 0; i < num_spatial_axes_; ++i)
{
pad_data[i] = (num_pad_dims == 0) ? kDefaultPad :
conv_param.pad((num_pad_dims == 1) ? 0 : i);
}
}
/* 計算dilation */
// Setup dilation dimensions (dilation_).
dilation_.Reshape(spatial_dim_blob_shape);
int* dilation_data = dilation_.mutable_cpu_data();
const int num_dilation_dims = conv_param.dilation_size();
CHECK(num_dilation_dims == 0 || num_dilation_dims == 1 ||
num_dilation_dims == num_spatial_axes_)
<< "dilation must be specified once, or once per spatial dimension "
<< "(dilation specified " << num_dilation_dims << " times; "
<< num_spatial_axes_ << " spatial dims).";
const int kDefaultDilation = 1;
for (int i = 0; i < num_spatial_axes_; ++i)
{
dilation_data[i] = (num_dilation_dims == 0) ? kDefaultDilation :
conv_param.dilation((num_dilation_dims == 1) ? 0 : i);
}
//判斷是否是卷積核是否是1*1嗎,且不填充、步長為1。
// Special case: im2col is the identity for 1x1 convolution with stride 1
// and no padding, so flag for skipping the buffer and transformation.
is_1x1_ = true;
for (int i = 0; i < num_spatial_axes_; ++i)
{
is_1x1_ &=
kernel_shape_data[i] == 1 && stride_data[i] == 1 && pad_data[i] == 0;
if (!is_1x1_) break;
}
// Configure output channels and groups.
channels_ = bottom[0]->shape(channel_axis_);//輸入影象的通道數
num_output_ = this->layer_param_.convolution_param().num_output();//卷積後圖像的通道數
CHECK_GT(num_output_, 0);
group_ = this->layer_param_.convolution_param().group();//group_:The group size for group conv
CHECK_EQ(channels_ % group_, 0);
CHECK_EQ(num_output_ % group_, 0)
<< "Number of output should be multiples of group.";
if (reverse_dimensions())//這個虛擬函式的實現應該是conv_layer和deconv_layer的區別之一
{
conv_out_channels_ = channels_;
conv_in_channels_ = num_output_;
}
else
{
conv_out_channels_ = num_output_;
conv_in_channels_ = channels_;
}
/*
/*
The vector that stores the learnable parameters as a set of blobs.
vector<shared_ptr<Blob<Dtype> > > blobs_;
定義於layer.hpp
*/
// Handle the parameters: weights and biases.
// - blobs_[0] holds the filter weights
// - blobs_[1] holds the biases (optional)
vector<int> weight_shape(2);
weight_shape[0] = conv_out_channels_;
weight_shape[1] = conv_in_channels_ / group_;
for (int i = 0; i < num_spatial_axes_; ++i)
{
weight_shape.push_back(kernel_shape_data[i]);
}
bias_term_ = this->layer_param_.convolution_param().bias_term();//bool型別,是否啟動偏置
vector<int> bias_shape(bias_term_, num_output_);
if (this->blobs_.size() > 0)
{
CHECK_EQ(1 + bias_term_, this->blobs_.size())
<< "Incorrect number of weight blobs.";
if (weight_shape != this->blobs_[0]->shape())
{
Blob<Dtype> weight_shaped_blob(weight_shape);
LOG(FATAL) << "Incorrect weight shape: expected shape "
<< weight_shaped_blob.shape_string() << "; instead, shape was "
<< this->blobs_[0]->shape_string();
}
if (bias_term_ && bias_shape != this->blobs_[1]->shape())
{
Blob<Dtype> bias_shaped_blob(bias_shape);
LOG(FATAL) << "Incorrect bias shape: expected shape "
<< bias_shaped_blob.shape_string() << "; instead, shape was "
<< this->blobs_[1]->shape_string();
}
LOG(INFO) << "Skipping parameter initialization";
}
else
{
if (bias_term_)
{
this->blobs_.resize(2);
}
else
{
this->blobs_.resize(1);
}
// Initialize and fill the weights:
// output channels x input channels per-group x kernel height x kernel width
this->blobs_[0].reset(new Blob<Dtype>(weight_shape));
shared_ptr<Filler<Dtype> > weight_filler(GetFiller<Dtype>(
this->layer_param_.convolution_param().weight_filler()));
weight_filler->Fill(this->blobs_[0].get());
// If necessary, initialize and fill the biases.
if (bias_term_)
{
this->blobs_[1].reset(new Blob<Dtype>(bias_shape));
shared_ptr<Filler<Dtype> > bias_filler(GetFiller<Dtype>(
this->layer_param_.convolution_param().bias_filler()));
bias_filler->Fill(this->blobs_[1].get());
}
}
kernel_dim_ = this->blobs_[0]->count(1); // kernel_dim_ = 輸入影象的維度/group_*卷積核的h*卷積核的w
weight_offset_ = conv_out_channels_ * kernel_dim_ / group_;
// Propagate gradients to the parameters (as directed by backward pass).
this->param_propagate_down_.resize(this->blobs_.size(), true);
}
template <typename Dtype>
void BaseConvolutionLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top)
{
const int first_spatial_axis = channel_axis_ + 1;
CHECK_EQ(bottom[0]->num_axes(), first_spatial_axis + num_spatial_axes_)
<< "bottom num_axes may not change.";
num_ = bottom[0]->count(0, channel_axis_);
CHECK_EQ(bottom[0]->shape(channel_axis_), channels_)
<< "Input size incompatible with convolution kernel.";
// TODO: generalize to handle inputs of different shapes.
for (int bottom_id = 1; bottom_id < bottom.size(); ++bottom_id) {
CHECK(bottom[0]->shape() == bottom[bottom_id]->shape())
<< "All inputs must have the same shape.";
}
// Shape the tops.
bottom_shape_ = &bottom[0]->shape();
compute_output_shape();// 計算輸出形狀vector<int> output_shape_;
vector<int> top_shape(bottom[0]->shape().begin(),
bottom[0]->shape().begin() + channel_axis_);
top_shape.push_back(num_output_);
for (int i = 0; i < num_spatial_axes_; ++i) {
top_shape.push_back(output_shape_[i]);
}
for (int top_id = 0; top_id < top.size(); ++top_id) {
top[top_id]->Reshape(top_shape);
}
if (reverse_dimensions())
//int conv_out_spatial_dim_ 卷積的輸出的空間維度 = 卷積後圖像h*卷積後圖像w
conv_out_spatial_dim_ = bottom[0]->count(first_spatial_axis);
else conv_out_spatial_dim_ = top[0]->count(first_spatial_axis);//這說明top的形狀事先就求好了,傳進來。
/*
在layer.hpp中的SetUp函式裡,確實是先呼叫了LayerSetUp(bottom, top);
再呼叫Reshape(bottom, top);
*/
col_offset_ = kernel_dim_ * conv_out_spatial_dim_;
output_offset_ = conv_out_channels_ * conv_out_spatial_dim_ / group_;
// Setup input dimensions (conv_input_shape_).
vector<int> bottom_dim_blob_shape(1, num_spatial_axes_ + 1);
conv_input_shape_.Reshape(bottom_dim_blob_shape);
int* conv_input_shape_data = conv_input_shape_.mutable_cpu_data();
for (int i = 0; i < num_spatial_axes_ + 1; ++i) {
if (reverse_dimensions()) {
conv_input_shape_data[i] = top[0]->shape(channel_axis_ + i);
} else {
conv_input_shape_data[i] = bottom[0]->shape(channel_axis_ + i);
}
}
// The im2col result buffer will only hold one image at a time to avoid
// overly large memory usage. In the special case of 1x1 convolution
// it goes lazily unused to save memory.
col_buffer_shape_.clear();
col_buffer_shape_.push_back(kernel_dim_ * group_);
for (int i = 0; i < num_spatial_axes_; ++i) {
if (reverse_dimensions()) {
col_buffer_shape_.push_back(input_shape(i + 1));
} else {
col_buffer_shape_.push_back(output_shape_[i]);
}
}
col_buffer_.Reshape(col_buffer_shape_);
bottom_dim_ = bottom[0]->count(channel_axis_);
top_dim_ = top[0]->count(channel_axis_);
num_kernels_im2col_ = conv_in_channels_ * conv_out_spatial_dim_;
num_kernels_col2im_ = reverse_dimensions() ? top_dim_ : bottom_dim_;
// Set up the all ones "bias multiplier" for adding biases by BLAS
out_spatial_dim_ = top[0]->count(first_spatial_axis);
if (bias_term_) {
vector<int> bias_multiplier_shape(1, out_spatial_dim_);
bias_multiplier_.Reshape(bias_multiplier_shape);
caffe_set(bias_multiplier_.count(), Dtype(1),
bias_multiplier_.mutable_cpu_data());
}
}
template <typename Dtype>
void BaseConvolutionLayer<Dtype>::forward_cpu_gemm(const Dtype* input,
const Dtype* weights, Dtype* output, bool skip_im2col) {
const Dtype* col_buff = input;
if (!is_1x1_) {
if (!skip_im2col) {
conv_im2col_cpu(input, col_buffer_.mutable_cpu_data());
}
col_buff = col_buffer_.cpu_data();
}
for (int g = 0; g < group_; ++g) {
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, conv_out_channels_ /
group_, conv_out_spatial_dim_, kernel_dim_,
(Dtype)1., weights + weight_offset_ * g, col_buff + col_offset_ * g,
(Dtype)0., output + output_offset_ * g);
}
}
template <typename Dtype>
void BaseConvolutionLayer<Dtype>::forward_cpu_bias(Dtype* output,
const Dtype* bias) {
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num_output_,
out_spatial_dim_, 1, (Dtype)1., bias, bias_multiplier_.cpu_data(),
(Dtype)1., output);
}
template <typename Dtype>
void BaseConvolutionLayer<Dtype>::backward_cpu_gemm(const Dtype* output,
const Dtype* weights, Dtype* input) {
Dtype* col_buff = col_buffer_.mutable_cpu_data();
if (is_1x1_) {
col_buff = input;
}
for (int g = 0; g < group_; ++g) {
caffe_cpu_gemm<Dtype>(CblasTrans, CblasNoTrans, kernel_dim_,
conv_out_spatial_dim_, conv_out_channels_ / group_,
(Dtype)1., weights + weight_offset_ * g, output + output_offset_ * g,
(Dtype)0., col_buff + col_offset_ * g);
}
if (!is_1x1_) {
conv_col2im_cpu(col_buff, input);
}
}
template <typename Dtype>
void BaseConvolutionLayer<Dtype>::weight_cpu_gemm(const Dtype* input,
const Dtype* output, Dtype* weights) {
const Dtype* col_buff = input;
if (!is_1x1_) {
conv_im2col_cpu(input, col_buffer_.mutable_cpu_data());
col_buff = col_buffer_.cpu_data();
}
for (int g = 0; g < group_; ++g) {
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasTrans, conv_out_channels_ / group_,
kernel_dim_, conv_out_spatial_dim_,
(Dtype)1., output + output_offset_ * g, col_buff + col_offset_ * g,
(Dtype)1., weights + weight_offset_ * g);
}
}
template <typename Dtype>
void BaseConvolutionLayer<Dtype>::backward_cpu_bias(Dtype* bias,
const Dtype* input) {
caffe_cpu_gemv<Dtype>(CblasNoTrans, num_output_, out_spatial_dim_, 1.,
input, bias_multiplier_.cpu_data(), 1., bias);
}
#ifndef CPU_ONLY
template <typename Dtype>
void BaseConvolutionLayer<Dtype>::forward_gpu_gemm(const Dtype* input,
const Dtype* weights, Dtype* output, bool skip_im2col) {
const Dtype* col_buff = input;
if (!is_1x1_) {
if (!skip_im2col) {
conv_im2col_gpu(input, col_buffer_.mutable_gpu_data());
}
col_buff = col_buffer_.gpu_data();
}
for (int g = 0; g < group_; ++g) {
caffe_gpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, conv_out_channels_ /
group_, conv_out_spatial_dim_, kernel_dim_,
(Dtype)1., weights + weight_offset_ * g, col_buff + col_offset_ * g,
(Dtype)0., output + output_offset_ * g);
}
}
template <typename Dtype>
void BaseConvolutionLayer<Dtype>::forward_gpu_bias(Dtype* output,
const Dtype* bias) {
caffe_gpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num_output_,
out_spatial_dim_, 1, (Dtype)1., bias, bias_multiplier_.gpu_data(),
(Dtype)1., output);
}
template <typename Dtype>
void BaseConvolutionLayer<Dtype>::backward_gpu_gemm(const Dtype* output,
const Dtype* weights, Dtype* input) {
Dtype* col_buff = col_buffer_.mutable_gpu_data();
if (is_1x1_) {
col_buff = input;
}
for (int g = 0; g < group_; ++g) {
caffe_gpu_gemm<Dtype>(CblasTrans, CblasNoTrans, kernel_dim_,
conv_out_spatial_dim_, conv_out_channels_ / group_,
(Dtype)1., weights + weight_offset_ * g, output + output_offset_ * g,
(Dtype)0., col_buff + col_offset_ * g);
}
if (!is_1x1_) {
conv_col2im_gpu(col_buff, input);
}
}
template <typename Dtype>
void BaseConvolutionLayer<Dtype>::weight_gpu_gemm(const Dtype* input,
const Dtype* output, Dtype* weights) {
const Dtype* col_buff = input;
if (!is_1x1_) {
conv_im2col_gpu(input, col_buffer_.mutable_gpu_data());
col_buff = col_buffer_.gpu_data();
}
for (int g = 0; g < group_; ++g) {
caffe_gpu_gemm<Dtype>(CblasNoTrans, CblasTrans, conv_out_channe