1. 程式人生 > >遺傳演算法python程式碼

遺傳演算法python程式碼

import numpy as np
import matplotlib.pyplot as plt

DNA_SIZE = 10            # DNA length
POP_SIZE = 100           # population size
CROSS_RATE = 0.8         # mating probability (DNA crossover)
MUTATION_RATE = 0.003    # mutation probability
N_GENERATIONS = 200
X_BOUND = [0, 5]         # x upper and lower bounds
def F(x): return np.sin(10*x)*x + np.cos(2*x)*x # to find the maximum of this function # find non-zero fitness for selection def get_fitness(pred): return pred + 1e-3 - np.min(pred) # convert binary DNA to decimal and normalize it to a range(0, 5) def translateDNA(pop): return pop.dot(2 ** np.arange(DNA_SIZE)[::-1
]) / float(2**DNA_SIZE-1) * X_BOUND[1] def select(pop, fitness): # nature selection wrt pop's fitness idx = np.random.choice(np.arange(POP_SIZE), size=POP_SIZE, replace=True, p=fitness/fitness.sum()) return pop[idx] def crossover(parent, pop): # mating process (genes crossover)
if np.random.rand() < CROSS_RATE: i_ = np.random.randint(0, POP_SIZE, size=1) # select another individual from pop cross_points = np.random.randint(0, 2, size=DNA_SIZE).astype(np.bool) # choose crossover points parent[cross_points] = pop[i_, cross_points] # mating and produce one child return parent def mutate(child): for point in range(DNA_SIZE): if np.random.rand() < MUTATION_RATE: child[point] = 1 if child[point] == 0 else 0 return child pop = np.random.randint(2, size=(POP_SIZE, DNA_SIZE)) # initialize the pop DNA plt.ion() # something about plotting x = np.linspace(*X_BOUND, 200) plt.plot(x, F(x)) for _ in range(N_GENERATIONS): F_values = F(translateDNA(pop)) # compute function value by extracting DNA # something about plotting if 'sca' in globals(): sca.remove() sca = plt.scatter(translateDNA(pop), F_values, s=200, lw=0, c='red', alpha=0.5); plt.pause(0.05) # GA part (evolution) fitness = get_fitness(F_values) # print("Most fitted DNA: ", pop[np.argmax(fitness), :]) pop = select(pop, fitness) pop_copy = pop.copy() for parent in pop: child = crossover(parent, pop_copy) child = mutate(child) parent[:] = child # parent is replaced by its child plt.ioff(); plt.show()

這裡寫圖片描述