keras中的keras.utils.to_categorical方法
阿新 • • 發佈:2019-02-08
to_categorical(y, num_classes=None, dtype='float32')
將整型標籤轉為onehot。y為int
陣列,num_classes為標籤類別總數,大於max(y)(標籤從0開始的)。
返回:如果num_classes=None,返回len(y) * [max(y)+1]
(維度,m*n表示m行n列矩陣,下同),否則為len(y) * num_classes
。
import keras
ohl=keras.utils.to_categorical([1,3])
# ohl=keras.utils.to_categorical([[1],[3]])
print (ohl)
"""
[[0. 1. 0. 0.]
[0. 0. 0. 1.]]
"""
ohl=keras.utils.to_categorical([1,3],num_classes=5)
print(ohl)
"""
[[0. 1. 0. 0. 0.]
[0. 0. 0. 1. 0.]]
"""
該部分keras原始碼如下:
def to_categorical(y, num_classes=None, dtype='float32'):
"""Converts a class vector (integers) to binary class matrix.
E.g. for use with categorical_crossentropy.
# Arguments
y: class vector to be converted into a matrix
(integers from 0 to num_classes).
num_classes: total number of classes.
dtype: The data type expected by the input, as a string
(`float32`, `float64`, `int32`...)
# Returns
A binary matrix representation of the input. The classes axis
is placed last.
"""
y = np.array(y, dtype='int')
input_shape = y.shape
if input_shape and input_shape[-1] == 1 and len(input_shape) > 1:
input_shape = tuple(input_shape[:-1])
y = y.ravel()
if not num_classes:
num_classes = np.max(y) + 1
n = y.shape[0]
categorical = np.zeros( (n, num_classes), dtype=dtype)
categorical[np.arange(n), y] = 1
output_shape = input_shape + (num_classes,)
categorical = np.reshape(categorical, output_shape)
return categorical