1. 程式人生 > >TF:TF之Tensorboard實踐:將神經網路Tensorboard形式得到events.out.tfevents檔案+dos內執行該檔案本地伺服器輸出到網頁視覺化

TF:TF之Tensorboard實踐:將神經網路Tensorboard形式得到events.out.tfevents檔案+dos內執行該檔案本地伺服器輸出到網頁視覺化

import tensorflow as tf
import numpy as np     


def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
    # add one more layer and return the output of this layer
    layer_name = 'layer%s' % n_layer
    with tf.name_scope(layer_name):
        with tf.name_scope('Jason_niu_weights'):
            Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
            tf.summary.histogram(layer_name + '/weights', Weights)
        with tf.name_scope('Jason_niu_biases'):
            biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
            tf.summary.histogram(layer_name + '/biases', biases) 
        with tf.name_scope('Jason_niu_Wx_plus_b'):
            Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b, )
        tf.summary.histogram(layer_name + '/outputs', outputs) 
        return outputs


# Make up some real data
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

# define placeholder for inputs to network
with tf.name_scope('Jason_niu_inputs'):
    xs = tf.placeholder(tf.float32, [None, 1], name='x_input')
    ys = tf.placeholder(tf.float32, [None, 1], name='y_input')

# add hidden layer
l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None)

# the error between prediciton and real data
with tf.name_scope('Jason_niu_loss'):
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
                                        reduction_indices=[1]))
    tf.summary.scalar('Jason_niu_loss', loss)  

with tf.name_scope('Jason_niu_train'):
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

sess = tf.Session()
merged =  tf.summary.merge_all()  
writer = tf.summary.FileWriter("logs3/", sess.graph)
# important step
sess.run(tf.global_variables_initializer())

for i in range(1000):  
    sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
    if i % 50 == 0:                                           
        result = sess.run(merged,feed_dict={xs: x_data, ys: y_data})
        writer.add_summary(result, i)