[HNOI2017]單旋
阿新 • • 發佈:2019-03-25
sse lol line 最大 freopen gin rgs 一個點 digi
題意:
模擬一棵單旋splay,支持五種操作
\(\text{Solution:}\)
顯然不是讓你碼一顆單旋splay(一條鏈卡爆你)。
在草稿紙上畫一畫,模擬一遍,觀察中序遍歷下的深度變化,發現當x為最小值時它沒有左兒子,可能有右兒子,splay到根後除了它的右兒子深度不變,其余的深度都+1,x為最大值時同理。
因此,每次操作我們都可以用線段樹直接維護深度,接下來要解決的問題就是怎麽插入。
二叉搜索樹一個點總是插在其前驅的右兒子或是後繼的左兒子
所以我們只要找到它前驅或後繼,然後接在它的下面,這個過程很容易用set實現,還要記錄每個點的左兒子以及右兒子是誰,不然無法判斷插入到前驅和後繼哪個下面去。
\(\text{Source}\)
// luogu-judger-enable-o2 #include <set> #include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <assert.h> #include <algorithm> using namespace std; #define LL long long #define debug(...) fprintf(stderr, __VA_ARGS__) #define GO debug("GO\n") inline int rint() { register int x = 0, f = 1; register char c; while (!isdigit(c = getchar())) if (c == '-') f = -1; while (x = (x << 1) + (x << 3) + (c ^ 48), isdigit(c = getchar())); return x * f; } template<typename T> inline void chkmin(T &a, T b) { a > b ? a = b : 0; } template<typename T> inline void chkmax(T &a, T b) { a < b ? a = b : 0; } const int N = 1e5 + 10; #define Iter set<int>::iterator set<int> S; int a[N], tot, ch[N][2], fa[N], m, op[N], buc[N], root; int dep[N<<2]; void add(int x, int l, int r, int L, int R, int val) { if (L <= l and r <= R) { dep[x] += val; return; } int mid = (l + r) >> 1; if (L <= mid) add(x<<1, l, mid, L, R, val); if (mid < R) add(x<<1|1, mid + 1, r, L, R, val); } int query(int x, int l, int r, int p) { if (l == r) { return dep[x]; } int mid = (l + r) >> 1; if (p <= mid) return dep[x] + query(x<<1, l, mid, p); else return dep[x] + query(x<<1|1, mid+1, r, p); } void change(int x, int y) { add(1, 1, tot, x, x, y - query(1, 1, tot, x)); } int Insert(int x) { Iter it = S.insert(x).first; if (root == 0) { root = x; change(x, 1); return 1; } if (it != S.begin()) { if (ch[*--it][1] == 0) ch[fa[x] = *it][1] = x; it++; } if (fa[x] == 0) ch[fa[x] = *++it][0] = x; int res = query(1, 1, tot, fa[x]) + 1; change(x, res); return res; } int findmin() { int x = *S.begin(), res = query(1, 1, tot, x); if (x == root) return 1; if (x + 1 <= fa[x] - 1) add(1, 1, tot, x + 1, fa[x] - 1, -1); add(1, 1, tot, 1, tot, 1); ch[fa[x]][0] = ch[x][1], fa[ch[x][1]] = fa[x]; fa[root] = x, ch[x][1] = root; root = x; change(x, 1); return res; } int findmax() { int x = *S.rbegin(), res = query(1, 1, tot, x); if (x == root) return 1; if (x - 1 >= fa[x] + 1) add(1, 1, tot, fa[x] + 1, x - 1, -1); add(1, 1, tot, 1, tot, 1); ch[fa[x]][1] = ch[x][0], fa[ch[x][0]] = fa[x]; fa[root] = x, ch[x][0] = root; root = x; change(x, 1); return res; } void delmin() { printf("%d\n", findmin()); add(1, 1, tot, 1, tot, -1); S.erase(root); root = ch[root][1]; fa[root] = 0; } void delmax() { printf("%d\n", findmax()); add(1, 1, tot, 1, tot, -1); S.erase(root); root = ch[root][0]; fa[root] = 0; } int main() { #ifndef ONLINE_JUDGE freopen("xhc.in", "r", stdin); freopen("xhc.out", "w", stdout); #endif m = rint(); for (int i = 1; i <= m; ++ i) { op[i] = rint(); if (op[i] == 1) { tot++; a[tot] = buc[tot] = rint(); } } sort(buc + 1, buc + 1 + tot); for (int i = 1; i <= tot; ++ i) a[i] = lower_bound(buc + 1, buc + 1 + tot, a[i]) - buc; for (int i = 1, cnt = 0; i <= m; ++ i) { switch(op[i]) { case 1: printf("%d\n", Insert(a[++cnt])); break; case 2: printf("%d\n", findmin()); break; case 3: printf("%d\n", findmax()); break; case 4: delmin(); break; case 5: delmax(); break; } } }
[HNOI2017]單旋