1. 程式人生 > >資料的儲存結構淺析LSM-Tree和B-tree

資料的儲存結構淺析LSM-Tree和B-tree

[toc] 本篇主要討論的是不同儲存結構(主要是LSM-tree和B-tree),它們應對的不同場景,所採用的底層儲存結構,以及對應用以提升效率的索引。 所謂資料庫,最基礎的功能,就是儲存資料,並且在需要的時候可以方便地檢索到需要的資料。在這個基礎上,演化出了不同的資料庫系統,以及多種索引機制幫助檢索資料。這篇我們就來討論幾種常見的資料儲存和索引機制,主要是B-tree,LSM-Tree,以及它們對應的優缺點。 # 順序儲存與雜湊索引 試想一下,如果按照**儲存資料,並且在需要的時候可以方便地檢索到需要的資料**這一標準,設計一個簡單的資料庫,那麼最簡單的做法應該怎麼做呢? 最簡單的做法,就是通過順序儲存資料到一個日誌檔案中。然後通過索引,這裡以雜湊索引為例(比如java的hashMap),記錄每條資料的key以及對應的位移,將其儲存到記憶體中,避免隨機檢索巨大的開銷。值得注意的是,**引入索引,雖然會顯著提高查詢效率,但會略微降低寫入速度。因為每次寫入的時候都需要額外寫入到雜湊索引中**,這一點對大部分索引都是適用的。 ![雜湊索引](https://img2020.cnblogs.com/blog/1011838/202004/1011838-20200406143256212-1708693228.png) 上圖為雜湊索引示例,下面是順序儲存在磁碟上是日誌資料,上面的記憶體中的雜湊索引。雜湊索引是很多複雜索引的基礎,比如在mysql中就有提供雜湊索引的選項,當然雜湊索引並不常用,因為它最基礎,同時也意味著它最容易被優化。 上述形式的順序儲存+雜湊索引中,增加資料和查詢資料相對容易理解,而修改資料則可以通過將新資料追加到檔案尾部,重新生成索引實現,刪除操作則可以給與雜湊索引一個識別符號實現(如對應key置為-1)。 但這樣有一個問題,可能會出現磁碟耗盡的情況。針對這一個問題,我們可以將日誌檔案拆分成多個一定大小的檔案段(這裡的檔案段可以理解為接受統一管理的資料檔案)。當一個檔案段達到一定大小,比如4kb的時候,就關閉它,新建一個檔案段。而舊的檔案段可以進行壓縮,前面提到過,刪除和修改都是通過追加日誌相同的key-value實現的,那麼早先的資料其實就已經沒用的,所以壓縮的時候只保留最新的key資料。壓縮到過程如下面這張圖所示: ![壓縮資料](https://img2020.cnblogs.com/blog/1011838/202004/1011838-20200406143302310-289147556.png) 圖中上面的部分就是順序儲存的資料,可以發現其中有很多的key都是相同的,這是因為順序儲存情況下,修改資料就是不斷新寫入相同的key。這種情況我們要的只有相同key的最新的value。所以壓縮過程也是一個清理磁碟的過程。 壓縮合並過程可以由後臺進行默默進行,所以不必擔心這個過程影響查詢效能。上圖中只有一個數據檔案段,但實際上可以有多個檔案段,多個檔案段也可以合併(類似於Hbase中多個檔案的merge操作)。 當然這樣的優化可以極大程度節省空間,但必不可少得會給檢索帶來時間上的損耗。在多個檔案段的情況,每個檔案段都有自己的雜湊索引,故而要查詢資料會首先根據key查詢記憶體中最新檔案段的雜湊索引,如果找不到,那麼找次新檔案段的雜湊索引,接著找次新的雜湊索引,直到遍歷所有檔案段的雜湊索引。 綜上,**順序儲存+雜湊索引優點明顯,簡單,高效。缺點是雜湊索引需全部存到記憶體(如果將雜湊索引放到磁碟那相當於放棄了檢索的高效),並且難以實現區域查詢**。 為了解決它的這些問題,我們可以將雜湊索引做一些小小的改變。具體來說,就是讓檔案段的資料,按key進行排序儲存。這樣會帶來哪些改變呢? # SSTable和LSM tree 將資料檔案段中的資料按key進行排序,並且保證相同的key只出現一次(在壓縮的時候保證),這種格式就稱之為排序字串表,簡稱SStable(Sorted String Table)。 將資料按Key進行排序後有以下幾個好處: 1. **合併更加簡單高效**,即使資料檔案段大於記憶體,也可以使用類似**歸併排序**演算法進行資料段的壓縮,即將一個大檔案拆成多個小資料進行壓縮。如果多個檔案段中有相同的key,那麼以最新的檔案段的key為準。 2. **緩解雜湊索引需要整個hashMap儲存到記憶體的窘境**。因為key是排序的,所以可以在記憶體中維持一個稀疏索引,儲存每個key的範圍,具體見下圖。並且這個稀疏索引所需的記憶體空間是很小的。 ![稀疏索引與SStable](https://img2020.cnblogs.com/blog/1011838/202004/1011838-20200406153720999-334313717.png) 通過稍微改變一下檔案段的結果,就獲得如此多的好處。但還有一個問題,前面的雜湊索引是基於順序儲存的日誌檔案的,要讓SStable按key排序,那就不能順序儲存磁碟了呀(即無法儲存的時候立即寫入磁碟)!!的確是這樣,**雖然也可以使用類似B-tree來實現磁碟上的排序儲存,但轉換下思路,其實將資料先儲存在記憶體中其實更加方便**。 具體實現流程,**是在記憶體中維護一個類似TreeMap的資料結構用於儲存資料(TreeMap底層是基於紅黑樹對儲存的key進行排序的。無論我們按照什麼樣的順序儲存資料,TreeMap總是會將資料按照key進行排序)。這個TreeMap稱為記憶體表,當記憶體表超過一定閾值的時候,就將其寫入到磁碟中,成為SStable,因為已經排好序,所以寫入的效率其實比想象的要高**。後期再對磁碟中的SStable進行壓縮與合併操作。 當需要根據key檢索的時候,會先去記憶體表中檢索,找不到再去最新的SStable,再去次新的SStable,直到遍歷完全部。 上述這種索引結構被稱為之LSM-Tree,全稱是Log-Structured Merge-Tree,即日誌合併樹。而這種基於合併和壓縮檔案原理的儲存引擎被稱為LSM儲存引擎,其中比較為人所知的是Hbase。 # B-Tree 最後,我們再來討論流傳最久的資料庫村粗結構。與LSM-Tree這幾年才逐漸為人所知不同,B-tree儲存結構擔得起**經久不衰**這四個字。 B-tree本身是一種樹形的資料結構,更具體點說是一顆平衡查詢樹,它也是通過儲存順序的key儲存資料(這一點和SStable有相似之處)。不同於前面的LSM-tree的檔案段,B-tree將資料庫分解成固定大小的塊或頁,通常一個頁大小是4kb。這種分配方法更加貼合底層的磁碟。 當需要進行查詢的時候,總是從根開始,根據範圍跳轉到對應的key,而其對應的value可以是值本身,也可以是指向儲存對應資料的磁碟地址。下圖是一個具體的例子: ![B-tree](https://img2020.cnblogs.com/blog/1011838/202004/1011838-20200406163946100-1822949742.png) 而在更新或插入的時候,有可能會出現沒有足夠空間來容納新key的問題,這時候就會發生分裂。分裂操作是比較危險的,在分裂的時候如果資料庫崩潰,可能會導致索引被破壞。為了防止這個問題,可以引入預寫日誌(write-ahead log,WAL)機制。mysql的binlog就是這樣的東西。具體說就是在執行操作的時候,將此次操作寫入一個只允許追加的檔案中,這樣一來當崩潰的時候就可以檢查日誌並進行恢復。 # 儲存結構的比對 從使用的角度上來說,B-tree等索引儲存結構多用於OLTP型的資料庫,因為這類資料庫主要以事務,或是行級別的讀取和儲存為主的(比如Mysql)。換句話說,這種型別的資料庫更多的操作是小批量或單行級別的更新或讀取,並且可能還有事務方面的需求,這種型別正是B-tree結構所擅長的。 而 LSM-tree則多用於大規模資料情況下的檢索分析和快速寫入的情況。在寫入的效能上,因為上直接寫入記憶體再定期刷入到磁碟中,所以寫入操作對使用者的感知而言上非常迅速的。而檢索速度也因為key順序儲存,可以快速定位到key對應的位置,因而具有較好的檢索效能。 但是LSM-tree比較顯著的應用方向還是在大規模分析這方面,在大規模分析(OLAP)場景下,資料通常都是列式儲存,並且需要全表掃描。其中磁碟資料可以使用二進位制進行壓縮,讀取的時候可以有效減少磁碟IO的處理時間(與之相比,B-tree等儲存結構就無法充分壓縮,因為每次都只處理小部分資料)。同時在儲存檔案中還能再進一步切分,比如將列式資料按照水平切分成不同的Page,同時儲存一些簡單的索引,用來指定不同Page大概範圍,Hadoop的儲存資料格式Parquet就是類似的設計。 # 小結 本篇主要討論了幾種基礎的儲存結構和索引以及其對應使用場景,限於篇幅,更多索引的變種無法多加討論,比如B-tree的優化版B+tree,多列索引等。 其實大部分資料庫或者說儲存引擎,都是針對不同的場景下,在舊有的基礎上進行一定程度的微改造創新,但大體的結構依舊是以上述兩三種為準,瞭解了上述幾種結構,對資料儲存方面應該能夠有一個感性的認知了。 此外本章多參考自《DDIA》第三章節,對分散式系統感興趣的童鞋可以看看此書,肯定不會失望的。