所有拓撲序列
阿新 • • 發佈:2020-12-16
題目連結:1270:Following Orders
分析
- 回溯法
- 最壞複雜度為 O ( n ! ) O(n!) O(n!),也就是不含有向邊的圖,節點1~n的全排列
#include <iostream>
#include <cstring>
#include <algorithm>
#include <set>
using namespace std;
set<char> nodes;
int indeg[300];
bool vis[300];
int G[300][300]; // 鄰接矩陣
int N = 0;
char rst[300]; // topological sort result
void init()
{
nodes.clear();
memset(vis, 0, sizeof(vis));
memset(indeg, 0, sizeof(indeg));
memset(rst, 0, sizeof(rst));
memset(G, 0, sizeof(G));
}
void dfs(int dep)
{
if (dep == N) {
printf("%s\n", rst);
return ;
}
/* to decide current node c, traverse all the node in alphabet-order */
for (char c : nodes) {
/* traverse previous nodes */
bool isok = 1;
for (int j = 0; j < dep; ++j)
/* current node shouldn't connect/equal to previous node */
if (G[c][rst[ j]] || rst[j] == c) {
isok = 0;
break;
}
if (!isok)
continue;
rst[dep] = c;
dfs(dep+1);
}
}
int main()
{
while (1) {
init();
/* input */
char c, d;
bool flag = 0;
while ((c = getchar()) != EOF && c != '\n') {
if (c == ' ')
continue;
nodes.insert(c);
}
if (c == EOF)
break;
while ((c = getchar()) != EOF && c != '\n') {
if (c == ' ')
continue;
if (flag == 0)
d = c, flag = 1;
else {
G[d][c] = 1;
flag = 0;
++indeg[c];
}
}
N = nodes.size();
dfs(0);
printf("\n");
}
system("pause");
return 0;
}