1. 程式人生 > 其它 >動態規劃法(三)——最長公共子序列

動態規劃法(三)——最長公共子序列

問題描述

給定兩個序列,求出它們的最長公共子序列。 如:序列X={a,b,c,b,d,a,b},Y={b,d,c,a,b,a},則X和Y的最長公共子序列為{b,c,b,a}

  • 子序列:子序列為原序列的一個子集,並不要求連續,但要求子序列中元素的順序和原序列元素的順序一致。

定理

設兩個序列分別是X={x1,x2……,xm},Y={y1,y2……,yn},它們的最長公共子序列為Z={z1,z2,……,zk}。

  1. 若xm=yn,則先求Xm-1和Yn-1的最長公共子序列,再在其尾部加上xm即可得Xm和Yn的最長公共子序列。
  2. 若xm!=yn,則必須分別求Xm、Yn-1和Xm-1、Yn的最長公共子序列,其中較長者就是Xm和Yn的最長公共子序列。

資料結構

  • c[i][j]: 用來記錄Xi和Yj的最長公共子序列的長度。
  • s[i][j]: 用來標識Xi和Yi的最長公共子序列是由哪種情況得來:c[i][j-1]、c[i-1][j]、c[i][j]+1。 該陣列能還原出最長公共子序列。

演算法思路

1. 生成c陣列和s陣列所有元素

  1. 將c陣列的第0行、第0列初始化為0;
  2. 從c陣列的第一行、第一列開始,依次從左向右、從上到下填充元素值: a)若x[i]==y[j],則c[i][j]=c[i-1][j-1]+1,s[i][j]=1; b)若x[i]!=y[j],則分別計算c[i][j-1]、c[i-1][j],將大的那個作為c[i][j];並且,如果c[i-1][j]>=c[i][j-1],則s[i][j]=2;如果c[i-1][j]< c[i][j-1],則s[i][j]=3;

2. 根據s陣列求得最長公共子序列

程式碼實現

private int[][] c;
private int[][] s;

1. 生成c陣列和s陣列所有元素

void LCSLength(String a, String b){
    // x和y的最前端分別加上0
    char[] x = ("0"+a).toCharArray();
    char[] y = ("0"+b).toCharArray();

    c = new int[x.length][y.length];
    s = new int[x.length][y.length];

    // 初始化c、s
    for( int i=0; i<x.length; i++ ){
        c[i][0] = 0;
    }
    for( int i=0; i<y.length; i++ ){
        c[0][i] = 0;
    }

    // 從上到下、從左到右填充c、s陣列
    for( int i=1; i<x.length; i++ ){
        for( int j=1; j<y.length; j++ ){
            if( x[i]==y[j] ){
                c[i][j] = c[i-1][j-1]+1;
                s[i][j] = 1;
            }
            else if ( c[i-1][j] >= c[i][j-1] ){
                c[i][j] = c[i-1][j];
                s[i][j] = 2;
            }
            else {
                c[i][j] = c[i][j-1];
                s[i][j] = 3;
            }
        }
    }
}

2. 根據s陣列求得最長公共子序列

StringBuilder sb = new StringBuilder();

void CLCS( int i, int j ){
    if ( i==0 || j==0 ) return;
    if ( s[i][j]==1 ) {
        CLCS( i-1,j-1 );
        sb.append( x[i] ); // 為了讓公共子序列正序輸出,因此需要在遞迴呼叫之後將x[i]新增至sb
    }
    else if ( s[i][j]==2 ){
        CLCS( i-1,j );
    }
    else {
        CLCS( i,j-1 );
    }
}

圖示

  • 初始化c和s陣列,將第0行、第0列都設為0:
  • 從第一行、第一列開始,依次從左到右、從上到下填充c和s陣列:
  • 當c和s都填充完畢後,就可以根據s陣列找到最長公共子序列 從s陣列最右下角的元素開始: a)若s[i][j]==1,則找到一個字元,並繼續比較左上角的元素; b)若s[i][j]==2,則繼續比較上方的元素; c)s[i][j]==3,則繼續比較左側的元素。 d)直到i==0或j==0為止。