BZOJ 1077: [SCOI2008]天平
阿新 • • 發佈:2018-11-02
題面
題意
有n個砝碼,每個砝碼的質量為1g,2g或3g,但你不知道每個砝碼的具體質量是多少,但你知道它們某幾對砝碼之間的大小關係,先將兩個砝碼A,B放在天平左邊,請你再選兩個砝碼放在天平右邊,求有多少種選法使得天平的左邊重、一樣重、右邊重?(只有結果保證惟一的選法才統計在內)
做法
我們可以將
與
的大小關係轉化為
與
的關係或是
與
的關係,而若
砝碼比
砝碼重,則可以轉化為
,而
砝碼比
砝碼輕也是同理,如果不知道
砝碼與
砝碼的關係,那麼
,因此此題就可以轉化為給出幾個不等式,求解另外幾個不等式,可以用差分約束系統來解決,對於每個差的上限用最短路來解,每個差的下限用最長路來解,然後判斷每對
,
是否一定滿足即可。
需要注意的是
和
兩種轉化方式中,只要有一種轉化方式的結果是唯一的,那麼這對
,
就是合法的,因此判斷時需要比較兩種不等式的值。
程式碼
#include<iostream>
#include<cstdio>
#define N 60
using namespace std;
int n,A,B,mx[N][N],mn[N][N],c1,c2,c3,ans;
char str[N];
int main()
{
int i,j,k;
cin>>n>>A>>B;
for(i=1;i<=n;i++)
{
scanf("%s",str+1);
str[i]='=';
for(j=1;j<=n;j++)
{
if(str[j]=='+') mx[j][i]=2,mn[j][i]=1;
else if(str[j]=='-') mx[j][i]=-1,mn[j][i]=-2;
else if(str[j]=='?') mx[j][i]=2,mn[j][i]=-2;
else if(str[j]=='=') mx[j][i]=mn[j][i]=0;
}
}
for(k=1;k<=n;k++)
{
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
mx[i][j]=min(mx[i][j],mx[i][k]+mx[k][j]);
mn[i][j]=max(mn[i][j],mn[i][k]+mn[k][j]);
}
}
}
for(i=1;i<=n;i++)
{
if(i==A || i==B) continue;
for(j=i+1;j<=n;j++)
{
if(j==A || j==B) continue;
if(mx[i][A]<mn[B][j] || mx[j][A]<mn[B][i]) c3++;
else if(mn[i][A]>mx[B][j] || mn[j][A]>mx[B][i]) c1++;
else if(mx[i][A]==mn[i][A]&&mx[B][j]==mn[B][j]&&mx[i][A]==mx[B][j] || mx[j][A]==mn[j][A]&&mx[B][i]==mn[B][i]&&mx[j][A]==mx[B][i]) c2++;
}
}
cout<<c1<<" "<<c2<<" "<<c3;
}