機器學習與深度學習系列連載: 第二部分 深度學習(十四)迴圈神經網路 2(Gated RNN - LSTM )
阿新 • • 發佈:2018-11-12
迴圈神經網路 2(Gated RNN - LSTM )
simple RNN 具有梯度消失或者梯度爆炸的特點,所以,在實際應用中,帶有門限的RNN模型變種(Gated RNN)起著至關重要的作用,下面我們來進行介紹:
LSTM (Long Short-term Memory )
LSTM 是一個比較難理解的網路架構,有4個輸入(3個Gate),1個輸出
1 LSTM的運算過程
我們以x1,x2,x3 作為輸入,最上面的藍色為儲存資訊,最下面紅色為輸出資訊:
When x2 = 1, add the numbers of x1 into the memory
When x2 = -1, reset the memory
When x3 = 1, output the number in the memory.
2. LSTM的組成
(1)每一個時間時間點
• Input gate (current cell ma[ers)
• Forget (gate 0, forget past)
• Output (how much cell is exposed)
• New memory cell
(2)輸出
• Final memory cell:
• Final hidden state:
(3)結構
本專欄圖片、公式很多來自臺灣大學李弘毅老師、斯坦福大學cs229,斯坦福大學cs231n 、斯坦福大學cs224n課程。在這裡,感謝這些經典課程,向他們致敬!