資料結構07——線段樹
阿新 • • 發佈:2018-11-24
一.線段樹的定義
首先,線段樹它是一棵二叉樹,但它又不是一個完全二叉樹,卻是一個平衡二叉樹。它和二叉樹一樣,有一個一個的節點,但是對於線段樹而言,它的每一個節點表示的都是一個區間類相應的資訊。以求和為例,線段樹每個節點,儲存的就是一段區間的數字和。根節點儲存的就是整個區間的相應的數字和,之後從根節點將這個區間平均分成兩段,例如A[0...7],那麼它的左孩子就是A[0...3],右孩子就是A[4...7]。對於滿二叉樹而言,如果有h層,那麼其節點數為2^h-1個節點,最後一層(h-1),有2^(h-1)個節點。線段樹其實主要用於解決連續區間的動態高效查詢的問題,由於二叉結構的這樣一個特性,使用線段樹可以快速的查詢某一個節點在若干條線段中出現的次數,而且時間複雜度為O(logN)。
二.線段樹具體的實現
1.線段樹的基礎表示
package com.zfy.segmenttree; public class SegmentTree<E> { private E[] tree;//宣告一個樹陣列 private E[] data;//宣告一個數組 public SegmentTree(E[] arr) { data = (E[])new Object[arr.length]; for (int i = 0; i < arr.length; i++) { data[i] = arr[i]; } tree = (E[])new Object[4 * arr.length]; } //獲取個數 public int getSize(){ return data.length; } //按照index獲取元素 public E get(int index){ if(index < 0 || index >= data.length) throw new IllegalArgumentException("Index is illegal."); return data[index]; } //返回完全二叉樹的陣列表示中,一個索引所表示的元素的左孩子節點的索引 private int leftChild(int index){ return 2*index + 1;//是以陣列以0為開始的計算 } //返回完全二叉樹的陣列表示中,一個索引所表示的元素的右孩子節點的索引 private int rightChild(int index){ return 2*index + 2; } }
2.線段樹的建立
package com.zfy.segmenttree;
/*
* 計算treeIndex的介面
* */
public interface Merger<E> {
E merge(E a, E b);
}
private Merger<E> merger; public SegmentTree(E[] arr, Merger<E> merger) { this.merger = merger; data = (E[])new Object[arr.length]; for (int i = 0; i < arr.length; i++) { data[i] = arr[i]; } tree = (E[])new Object[4 * arr.length]; buildSegmentTree(0, 0, data.length - 1); } //在treeIndex的位置建立表示區間[l...r]的線段樹 private void buildSegmentTree(int treeIndex, int l, int r) { //l==r,就是這個裡面只有一個節點 if (l == r) { tree[treeIndex] = data[r]; return; } int leftTreeIndex = leftChild(treeIndex); int rightTreeIndex = rightChild(treeIndex); int mid = l + (r - l) / 2;//區間邊界:左邊界加上左右邊界它們的距離除以2,得到的位置就是中間的位置 buildSegmentTree(leftTreeIndex, l, mid); buildSegmentTree(rightTreeIndex, mid + 1, r); tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);//計算treeIndex }
3.線段樹的查詢
//線段樹查詢方法,返回區間[queryL, queryR]的值
public E query(int queryL, int queryR) {
if (queryL < 0 || queryL >= data.length || queryR < 0 || queryR >= data.length || queryL > queryR)
throw new IllegalArgumentException("Index is illegal.");
return query(0, 0, data.length - 1, queryL, queryR);
}
//在以treeIndex為根的線段樹中[l...r]的範圍裡,搜尋區間[queryL...queryR]的值
private E query(int treeIndex, int l, int r, int queryL, int queryR) {
if (l == queryL && r == queryR)
return tree[treeIndex];
int mid = l + (r - l) / 2;
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
//如果queryL > mid,則查詢其右孩子。反之則為左孩子
if (queryL > mid + 1) {
return query(rightTreeIndex, mid + 1, r, queryL, queryR);
} else if (queryR <= mid) {
return query(leftTreeIndex, l, mid, queryL, queryR);
}
E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
return merger.merge(leftResult, rightResult);
}
4.線段樹的更新操作
//將index位置的值,更新為e
public void set(int index, E e) {
if (index < 0 || index >= data.length)
throw new IllegalArgumentException("Index is illegal");
data[index] = e;
set(0, 0, data.length - 1, index, e);
}
//在以treeIndex為根的線段樹中更新index的值為e
private void set(int treeIndex, int l, int r, int index, E e) {
if (l == r) {
tree[treeIndex] = e;
return;
}
int mid = l + (r - l) / 2;
//treeIndex的節點分為[l...mid]和[mid+1...r]兩部分
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
if(index >= mid + 1)
set(rightTreeIndex, mid + 1, r, index, e);
else // index <= mid
set(leftTreeIndex, l, mid, index, e);
tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
}
5.完整程式碼
package com.zfy.segmenttree;
import com.zfy.segmenttree.Merger;
public class SegmentTree<E> {
private E[] tree;//宣告一個樹陣列
private E[] data;//宣告一個數組
private Merger<E> merger;
public SegmentTree(E[] arr, Merger<E> merger) {
this.merger = merger;
data = (E[])new Object[arr.length];
for (int i = 0; i < arr.length; i++) {
data[i] = arr[i];
}
tree = (E[])new Object[4 * arr.length];
buildSegmentTree(0, 0, data.length - 1);
}
//在treeIndex的位置建立表示區間[l...r]的線段樹
private void buildSegmentTree(int treeIndex, int l, int r) {
//l==r,就是這個裡面只有一個節點
if (l == r) {
tree[treeIndex] = data[r];
return;
}
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
int mid = l + (r - l) / 2;//區間邊界:左邊界加上左右邊界它們的距離除以2,得到的位置就是中間的位置
buildSegmentTree(leftTreeIndex, l, mid);
buildSegmentTree(rightTreeIndex, mid + 1, r);
tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);//計算treeIndex
}
//獲取個數
public int getSize(){
return data.length;
}
//按照index獲取元素
public E get(int index){
if(index < 0 || index >= data.length)
throw new IllegalArgumentException("Index is illegal.");
return data[index];
}
//返回完全二叉樹的陣列表示中,一個索引所表示的元素的左孩子節點的索引
private int leftChild(int index){
return 2*index + 1;//是以陣列以0為開始的計算
}
//返回完全二叉樹的陣列表示中,一個索引所表示的元素的右孩子節點的索引
private int rightChild(int index){
return 2*index + 2;
}
//線段樹查詢方法,返回區間[queryL, queryR]的值
public E query(int queryL, int queryR) {
if (queryL < 0 || queryL >= data.length || queryR < 0 || queryR >= data.length || queryL > queryR)
throw new IllegalArgumentException("Index is illegal.");
return query(0, 0, data.length - 1, queryL, queryR);
}
//在以treeIndex為根的線段樹中[l...r]的範圍裡,搜尋區間[queryL...queryR]的值
private E query(int treeIndex, int l, int r, int queryL, int queryR) {
if (l == queryL && r == queryR)
return tree[treeIndex];
int mid = l + (r - l) / 2;
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
//如果queryL > mid,則查詢其右孩子。反之則為左孩子
if (queryL > mid + 1) {
return query(rightTreeIndex, mid + 1, r, queryL, queryR);
} else if (queryR <= mid) {
return query(leftTreeIndex, l, mid, queryL, queryR);
}
E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
return merger.merge(leftResult, rightResult);
}
//將index位置的值,更新為e
public void set(int index, E e) {
if (index < 0 || index >= data.length)
throw new IllegalArgumentException("Index is illegal");
data[index] = e;
set(0, 0, data.length - 1, index, e);
}
//在以treeIndex為根的線段樹中更新index的值為e
private void set(int treeIndex, int l, int r, int index, E e) {
if (l == r) {
tree[treeIndex] = e;
return;
}
int mid = l + (r - l) / 2;
//treeIndex的節點分為[l...mid]和[mid+1...r]兩部分
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
if(index >= mid + 1)
set(rightTreeIndex, mid + 1, r, index, e);
else // index <= mid
set(leftTreeIndex, l, mid, index, e);
tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
}
@Override
public String toString() {
StringBuilder res = new StringBuilder();
res.append('[');
for (int i = 0; i < tree.length; i++) {
if (tree[i] != null)
res.append(tree[i]);
else
res.append("null");
if (i != tree.length - 1)
res.append(", ");
}
res.append(']');
return res.toString();
}
}
結束語:工欲善其事,必先利其器。而基礎就是我們的利器,合抱之木,生於毫末;九層之臺,起於累土;千里之行,始於足下。對於知識的學習,我還是認為要學好基礎。
參考:bobobo老師的玩轉資料結構
版權宣告:尊重博主原創文章,轉載請註明出處 https://blog.csdn.net/zfy163520