1. 程式人生 > >LOJ.6235.區間素數個數(Min_25篩)

LOJ.6235.區間素數個數(Min_25篩)

題目連結

\(Description\)

給定\(n\),求\(1\sim n\)中的素數個數。
\(2\leq n\leq10^{11}\)

\(Solution\)

Min_25篩。只需要求出\(g(n,|P|)\)

跑的好慢啊QAQ

//5283ms    11.62M
#include <cmath>
#include <cstdio>
#include <algorithm>
typedef long long LL;
const int N=317000<<1;

int cnt,P[N>>2],id1[N],id2[N];
LL g[N],w[N];
bool notP[N];

void Init(int n)
{
    notP[1]=1;
    for(int i=2; i<=n; ++i)
    {
        if(!notP[i]) P[++cnt]=i;
        for(int j=1; j<=cnt&&i*P[j]<=n; ++j)
            if(notP[i*P[j]]=1,!(i%P[j])) break;
    }
}

int main()
{
    LL n; scanf("%lld",&n);
    int m=0,Sqr=sqrt(n+0.5); Init(Sqr);
    for(LL i=1,j; i<=n; i=j+1)
    {
        w[++m]=n/i, j=n/w[m];
        if(w[m]<=Sqr) id1[w[m]]=m;
        else id2[j]=m;
        g[m]=w[m]-1;
    }
    w[m+1]=-1;
    for(int j=1; j<=cnt; ++j)
    {
        int pj=P[j]; LL lim=1ll*pj*pj;
        for(int i=1; lim<=w[i]; ++i)
        {
            int k=w[i]/pj<=Sqr?id1[w[i]/pj]:id2[n/(w[i]/pj)];
            g[i]-=g[k]-j+1;
        }
    }
    printf("%lld\n",g[1]);

    return 0;
}

有種神奇的寫法現在還覺得很迷:

#include<cstdio>
#include<math.h>

#define ll long long

const int N = 316300;
ll n, g[N<<1], a[N<<1];
int id, cnt, sn, prime[N];
inline int Id(ll x){ return x<=sn?x:id-n/x+1;}
int main() {
    scanf("%lld", &n), sn=sqrt(n);
    for(ll i=1; i<=n; i=a[id]+1) a[++id]=n/(n/i), g[id]=a[id]-1;
    for(int i=2; i<=sn; ++i) if(g[i]!=g[i-1]){
        // 這裡 i 必然是質數,因為 g[] 是字首質數個數
        // 當 <i 的質數的倍數都被篩去,讓 g[] 發生改變的位置只能是下一個質數
        prime[++cnt]=i;
        ll sq=(ll)i*i;
        for(int j=id; a[j]>=sq; --j) g[j]-=g[Id(a[j]/i)]-(cnt-1);
    }
    return printf("%lld\n", g[id]), 0;
}