1. 程式人生 > >4549(杜教bm+尤拉降冪+快速冪)

4549(杜教bm+尤拉降冪+快速冪)

題意: M斐波那契數列F[n]是一種整數數列,它的定義如下:

F[0] = a F[1] = b F[n] = F[n-1] * F[n-2] ( n > 1 )

現在給出a, b, n,你能求出F[n]的值嗎? 分析: f[0]=a; f[1]=b; f[2]=a * b; f[3]=a * b^2; f[4]=a^2 * b^3; f[5]=a^3 * b^5; … f[n]=a^fib(n-1) * b^fib(n); 得到這個式子後,可以用杜教bm求出fib數列的第n項和第n-1項,然後尤拉降冪一下快速冪求一下就完事了; 尤拉降冪: https://blog.csdn.net/hjsss3/article/details/81562792

程式碼:

#include <cstdio> 
#include<iostream> 
#include <cstring> 
#include <cmath> 
#include <algorithm> 
#include<vector>
#include<assert.h>
 
using namespace std;
#define rep(i,a,n) for (long long i=a;i<n;i++)
#define per(i,a,n) for (long long i=n-1;i>=a;i--)
#define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((long long)(x).size()) typedef vector<long long> VI; typedef long long ll; typedef pair<long long,long long> PII; ll mod=1e9+7; ll powmod(ll a,ll b) {ll res=1
;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;} // head long long _,n; namespace linear_seq { const long long N=10010; ll res[N],base[N],_c[N],_md[N]; vector<long long> Md; void mul(ll *a,ll *b,long long k) { rep(i,0,k+k) _c[i]=0; rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod; for (long long i=k+k-1;i>=k;i--) if (_c[i]) rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod; rep(i,0,k) a[i]=_c[i]; } long long solve(ll n,VI a,VI b) { // a 係數 b 初值 b[n+1]=a[0]*b[n]+... // printf("%d\n",SZ(b)); ll ans=0,pnt=0; long long k=SZ(a); assert(SZ(a)==SZ(b)); rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1; Md.clear(); rep(i,0,k) if (_md[i]!=0) Md.push_back(i); rep(i,0,k) res[i]=base[i]=0; res[0]=1; while ((1ll<<pnt)<=n) pnt++; for (long long p=pnt;p>=0;p--) { mul(res,res,k); if ((n>>p)&1) { for (long long i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0; rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod; } } rep(i,0,k) ans=(ans+res[i]*b[i])%mod; if (ans<0) ans+=mod; return ans; } VI BM(VI s) { VI C(1,1),B(1,1); long long L=0,m=1,b=1; rep(n,0,SZ(s)) { ll d=0; rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod; if (d==0) ++m; else if (2*L<=n) { VI T=C; ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; L=n+1-L; B=T; b=d; m=1; } else { ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; ++m; } } return C; } long long gao(VI a,ll n) { VI c=BM(a); c.erase(c.begin()); rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod; return solve(n,c,VI(a.begin(),a.begin()+SZ(c))); } }; ll phi(ll n) { ll i,rea=n; for(i=2;i*i<=n;i++) { if(n%i==0) { rea=rea-rea/i; while(n%i==0) n/=i; } } if(n>1) rea=rea-rea/n; return rea; } ll ksm(ll a,ll b,ll p){ ll ret=1; while(b){ if(b&1){ ret=ret*a%p; } b>>=1; a=a*a%p; } return ret; } ll a,b; VI f; int fr[1010]; int main() { ll x,y,n,m,ans,i; while(scanf("%lld%lld%lld",&a,&b,&n)!=EOF){ if(n==0){ cout<<a<<endl; continue; } if(n==1){ cout<<b<<endl; continue; } mod=phi(1e9+7); f.clear(); fr[1]=1; fr[2]=1; f.push_back(fr[1]); f.push_back(fr[2]); for(int i=3;i<=11;i++){ fr[i]=fr[i-1]+fr[i-2]%mod; f.push_back(fr[i]); } ll p1=linear_seq::gao(f,n-2); ll p2=linear_seq::gao(f,n-1); ll k1=ksm(a,p1+mod,1e9+7); ll k2=ksm(b,p2+mod,1e9+7); ll pp=1e9+7; ll ans=k1*k2%(pp); printf("%I64d\n",ans); } }