luoguP3185 [HNOI2007]分裂遊戲 列舉 + 博弈論
阿新 • • 發佈:2018-12-20
每個位置的瓶子中的每個石子是一個獨立的遊戲
只要計算出他們的\(sg\)值即可
至於方案數,反正不多\(n^3\)暴力列舉即可
反正怎麼暴力都能過啊
複雜度\(O(Tn^3)\)
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define ll long long #define ri register int #define rep(io, st, ed) for(ri io = st; io <= ed; io ++) #define drep(io, ed, st) for(ri io = ed; io >= st; io --) #define gc getchar inline int read() { int p = 0, w = 1; char c = gc(); while(c < '0' || c > '9') { if(c == '-') w = -1; c = gc(); } while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc(); return p * w; } int n, sg[25], mex[105]; inline void get_sg() { sg[n] = 0; drep(i, n - 1, 1) { memset(mex, 0, sizeof(mex)); rep(j, i + 1, n) rep(k, j, n) mex[sg[j] ^ sg[k]] = 1; rep(j, 0, 100) if(!mex[j]) { sg[i] = j; break; } } } int main() { int T = read(); while(T --) { n = read(); get_sg(); int SG = 0; rep(i, 1, n) SG ^= (read() & 1) * sg[i]; if(!SG) { printf("-1 -1 -1\n"); printf("0\n"); continue; } int ans = 0, flag = 0; rep(i, 1, n) rep(j, i + 1, n) rep(k, j, n) if((SG ^ sg[i] ^ sg[j] ^ sg[k]) == 0) { if(!flag) { printf("%d %d %d\n", i - 1, j - 1, k - 1); flag = 1; } ans ++; } printf("%d\n", ans); } return 0; }