1. 程式人生 > >tensorflow 相關函式___tf.nn.embedding_lookup()

tensorflow 相關函式___tf.nn.embedding_lookup()

tf.nn.embedding_lookup(params, ids, partition_strategy='mod', name=None, validate_indices=True, max_norm=None)

在params中查詢與ids對應的表示。 

 

partition_strategy 決定了ids分佈的方式,如果partition_strategy 是 “mod”,每個 id 按照 p = id % len(params) 分割. 例如,13 ids 按照 5 的間隔分割成5份: [[0, 5, 10], [1, 6, 11], [2, 7, 12], [3, 8], [4, 9]]

如果 partition_strategy 是 “div”, 每個 id連續地進行分割, 上一個例子分割為: [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10], [11, 12]]

 

例項:

# -*- coding= utf-8 -*-
import tensorflow as tf
import numpy as np

a = [[0.1, 0.2, 0.3], [1.1, 1.2, 1.3], [2.1, 2.2, 2.3], [3.1, 3.2, 3.3], [4.1, 4.2, 4.3]]
a = np.asarray(a)
idx1 = tf.Variable([0, 2, 3, 1], tf.int32)
idx2 = tf.Variable([[0, 2, 3, 1], [4, 0, 2, 2]], tf.int32)
out1 = tf.nn.embedding_lookup(a, idx1)
out2 = tf.nn.embedding_lookup(a, idx2)
init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    print sess.run(out1)
    print out1
    print '=================='
    print sess.run(out2)
    print out2

輸出:

[[ 0.1  0.2  0.3]
 [ 2.1  2.2  2.3]
 [ 3.1  3.2  3.3]
 [ 1.1  1.2  1.3]]
Tensor("embedding_lookup:0", shape=(4, 3), dtype=float64)
==================
[[[ 0.1  0.2  0.3]
  [ 2.1  2.2  2.3]
  [ 3.1  3.2  3.3]
  [ 1.1  1.2  1.3]]

 [[ 4.1  4.2  4.3]
  [ 0.1  0.2  0.3]
  [ 2.1  2.2  2.3]
  [ 2.1  2.2  2.3]]]
Tensor("embedding_lookup_1:0", shape=(2, 4, 3), dtype=float64)

通過上面的例子,我們知道,它是按編號去直接查詢的,可以是一維,也可以是多維的。

簡而言之,id就是對應的索引號。直接查詢就行。