Harmonic Number(調和級數+尤拉常數)
Description
In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers:
In this problem, you are given n, you have to find Hn.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 108).
Output
For each case, print the case number and the nth harmonic number. Errors less than 10-8 will be ignored.
Sample Input
12
1
2
3
4
5
6
7
8
9
90000000
99999999
100000000
題意:求f(n)=1/1+1/2+1/3+1/4…1/n (1 ≤ n ≤ 108).,精確到10-8
知識點:
調和級數(即f(n))至今沒有一個完全正確的公式,但尤拉給出過一個近似公式:(n很大時)
f(n)≈ln(n)+C+1/2*n
尤拉常數值:C≈0.57721566490153286060651209
c++ math庫中,log即為ln。
公式:f(n)=ln(n)+C+1/(2*n);
n很小時直接求,此時公式不是很準。
#include <iostream> #include <algorithm> #include <cstdio> #include <cstring> #include <cmath> using namespace std; const int maxn = 2500001; double a[maxn] = {0.0, 1.0}; int main() { int t, n, ca = 1; double s = 1.0; for(int i = 2; i < 100000001; i++) { s += (1.0 / i); if(i % 40 == 0) a[i/40] = s; } scanf("%d", &t); while(t--) { scanf("%d", &n); int x = n / 40; s = a[x]; for(int i = 40 * x + 1; i <= n; i++) s += (1.0 / i); printf("Case %d: %.10lf\n", ca++, s); } return 0; }
其實可以打表水過,畢竟公式記不住是硬傷啊。。
10e8全打表必定MLE,而每40個數記錄一個結果,即分別記錄1/40,1/80,1/120,...,1/10e8,這樣對於輸入的每個n,最多隻需執行39次運算,大大節省了時間,空間上也夠了。
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn = 2500001;
double a[maxn] = {0.0, 1.0};
int main()
{
int t, n, ca = 1;
double s = 1.0;
for(int i = 2; i < 100000001; i++)
{
s += (1.0 / i);
if(i % 40 == 0) a[i/40] = s;
}
scanf("%d", &t);
while(t--)
{
scanf("%d", &n);
int x = n / 40;
s = a[x];
for(int i = 40 * x + 1; i <= n; i++) s += (1.0 / i);
printf("Case %d: %.10lf\n", ca++, s);
}
return 0;
}