1. 程式人生 > >Harmonic Number(調和級數+尤拉常數)

Harmonic Number(調和級數+尤拉常數)

Harmonic Number Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

Description

In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers:

In this problem, you are given n, you have to find Hn.

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 108).

Output

For each case, print the case number and the nth harmonic number. Errors less than 10-8 will be ignored.

Sample Input

12

1

2

3

4

5

6

7

8

9

90000000

99999999

100000000

題意:求f(n)=1/1+1/2+1/3+1/4…1/n   (1 ≤ n ≤ 108).,精確到10-8    

知識點:

     調和級數(即f(n))至今沒有一個完全正確的公式,但尤拉給出過一個近似公式:(n很大時)

   f(n)ln(n)+C+1/2*n    

      尤拉常數值:C≈0.57721566490153286060651209

      c++ math庫中,log即為ln。

公式:f(n)=ln(n)+C+1/(2*n);

n很小時直接求,此時公式不是很準。

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>

using namespace std;

const int maxn = 2500001;
double a[maxn] = {0.0, 1.0};

int main()
{
    int t, n, ca = 1;
    double s = 1.0;
    for(int i = 2; i < 100000001; i++)
    {
        s += (1.0 / i);
        if(i % 40 == 0) a[i/40] = s;
    }
    scanf("%d", &t);
    while(t--)
    {
        scanf("%d", &n);
        int x = n / 40;
        s = a[x];
        for(int i = 40 * x + 1; i <= n; i++) s += (1.0 / i);
        printf("Case %d: %.10lf\n", ca++, s);
    }
    return 0;
}


其實可以打表水過,畢竟公式記不住是硬傷啊。。

10e8全打表必定MLE,而每40個數記錄一個結果,即分別記錄1/40,1/80,1/120,...,1/10e8,這樣對於輸入的每個n,最多隻需執行39次運算,大大節省了時間,空間上也夠了。

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>

using namespace std;

const int maxn = 2500001;
double a[maxn] = {0.0, 1.0};

int main()
{
    int t, n, ca = 1;
    double s = 1.0;
    for(int i = 2; i < 100000001; i++)
    {
        s += (1.0 / i);
        if(i % 40 == 0) a[i/40] = s;
    }
    scanf("%d", &t);
    while(t--)
    {
        scanf("%d", &n);
        int x = n / 40;
        s = a[x];
        for(int i = 40 * x + 1; i <= n; i++) s += (1.0 / i);
        printf("Case %d: %.10lf\n", ca++, s);
    }
    return 0;
}