機器學習(4)K最近鄰演算法
阿新 • • 發佈:2019-01-08
定義:根據最近的樣本決定測試樣本的類別。
為了判斷未知例項的類別,以所有已知類別的例項作為參照
選擇引數K 計算未知例項與所有已知例項的距離 選擇最近K個已知例項 根據少數服從多數的投票法則(majority-voting),讓未知例項歸類為K個最鄰近樣本中最多數的類別關於距離的衡量方法:Euclidean Distance 定義
其他距離衡量:餘弦值(cos), 相關度 (correlation), 曼哈頓距離 (Manhattan distance)
上例的k=4,則綠色的樣本為紅色的類別
演算法優點:
簡單,易於理解,容易實現,通過對K的選擇可具備丟噪音資料的健壯性
缺點:
需要大量空間儲存所有已知例項, 演算法複雜度高(需要比較所有已知例項與要分類的例項)
當其樣本分佈不平衡時,比如其中一類樣本過大(例項數量過多)佔主導的時候,新的未知例項容易被歸類為這個主導樣本,因為這類樣本例項的數量過大,但這個新的未知例項實際並木接近目標樣本
例子:
150個例項萼片長度,萼片寬度,花瓣長度,花瓣寬度(sepal length, sepal width, petal length and petal width)類別:Iris setosa, Iris versicolor, Iris virginica.from sklearn import neighbors from sklearn import datasets knn = neighbors.KNeighborsClassifier() iris = datasets.load_iris() print iris knn.fit(iris.data, iris.target) predictedLabel = knn.predict([[0.1, 0.2, 0.3, 0.4]]) print predictedLabel # KNN 實現Implementation: # Example of kNN implemented from Scratch in Python import csv import random import math import operator def loadDataset(filename, split, trainingSet=[] , testSet=[]): with open(filename, 'rb') as csvfile: lines = csv.reader(csvfile) dataset = list(lines) for x in range(len(dataset)-1): for y in range(4): dataset[x][y] = float(dataset[x][y]) if random.random() < split: trainingSet.append(dataset[x]) else: testSet.append(dataset[x]) def euclideanDistance(instance1, instance2, length): distance = 0 for x in range(length): distance += pow((instance1[x] - instance2[x]), 2) return math.sqrt(distance) def getNeighbors(trainingSet, testInstance, k): distances = [] length = len(testInstance)-1 for x in range(len(trainingSet)): dist = euclideanDistance(testInstance, trainingSet[x], length) distances.append((trainingSet[x], dist)) distances.sort(key=operator.itemgetter(1)) neighbors = [] for x in range(k): neighbors.append(distances[x][0]) return neighbors def getResponse(neighbors): classVotes = {} for x in range(len(neighbors)): response = neighbors[x][-1] if response in classVotes: classVotes[response] += 1 else: classVotes[response] = 1 sortedVotes = sorted(classVotes.iteritems(), key=operator.itemgetter(1), reverse=True) return sortedVotes[0][0] def getAccuracy(testSet, predictions): correct = 0 for x in range(len(testSet)): if testSet[x][-1] == predictions[x]: correct += 1 return (correct/float(len(testSet))) * 100.0 def main(): # prepare data trainingSet=[] testSet=[] split = 0.67 loadDataset('iris.data.txt', split, trainingSet, testSet) print 'Train set: ' + repr(len(trainingSet)) print 'Test set: ' + repr(len(testSet)) # generate predictions predictions=[] k = 3 for x in range(len(testSet)): neighbors = getNeighbors(trainingSet, testSet[x], k) result = getResponse(neighbors) predictions.append(result) print('> predicted=' + repr(result) + ', actual=' + repr(testSet[x][-1])) accuracy = getAccuracy(testSet, predictions) print('Accuracy: ' + repr(accuracy) + '%') main()