石子合併 四邊形不等式優化
阿新 • • 發佈:2019-01-27
很明顯的區間DP,d(i, j)表示取第i堆到第j堆石子最少花費,轉移方程d(i, j) = min(d(i, k) + d(k+1, j)) + sum[j] - sum[i].
四邊形a <= b < c <= d,有w(b, c) <= w(a, d)滿足決策單調性 . 且w(a, c) + w(b, d) <= w(b, c) + w(a, d)滿足四邊形不等式 .
AC程式碼:
#include<cstdio> #include<algorithm> using namespace std; const int inf = 1 << 30; const int maxn = 1000 + 5; int dp[maxn][maxn], s[maxn][maxn], a[maxn], sum[maxn]; //四邊形不等式優化 int solve(int n){ for(int i = 1; i <= n; ++i) { dp[i][i] = 0; s[i][i] = i; } for(int l = 2; l <= n; ++l) { for(int i = 1; i <= n - l + 1; ++i) { int j = i + l - 1; dp[i][j] = inf; int x = s[i][j-1], y = s[i+1][j]; for(int k = x; k <= y; ++k) { int h = dp[i][k] + dp[k+1][j] + sum[j] - sum[i-1]; if(h < dp[i][j]) { dp[i][j] = h; s[i][j] = k; } } } } return dp[1][n]; } int main(){ int n; while(scanf("%d", &n) == 1){ sum[0] = 0; for(int i = 1; i <= n; ++i) { scanf("%d", &a[i]); sum[i] = sum[i - 1] + a[i]; } printf("%d\n", solve(n)); } return 0; }
如有不當之處歡迎指出!