牛頓迭代法求求一個數的算術平方根
method),它是牛頓在17世紀提出的一種在實數域和複數域上近似求解方程的方法。多數方程不存在求根公式,因此求精確根非常困難,甚至不可能,從而尋找方程的近似根就顯得特別重要。方法使用函式f(x)的泰勒級數的前面幾項來尋找方程f(x)
= 0的根。牛頓迭代法是求方程根的重要方法之一,其最大優點是在方程f(x) =
0的單根附近具有平方收斂,而且該法還可以用來求方程的重根、復根,此時線性收斂,但是可通過一些方法變成超線性收斂。另外該方法廣泛用於計算機程式設計中。
牛頓迭代公式
設r是f(x) = 0的根,選取x0作為r初始近似值,過點(x0,f(x0))做
解非線性方程f(x)=0的牛頓法是把非線性方程線性化的一種近似方法。把f(x)在x0點附近展開成泰勒級數 f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +…
取其線性部分,作為非線性方程f(x) = 0的近似方程,即泰勒展開的前兩項,則有f(x0)+f'(x0)(x-x0)=0
設f'(x0)≠0則其解為x1=x0-f(x0)/f'(x0) 這樣,得到牛頓法的一個迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。
牛頓迭代法示意圖
軍人在進攻時常採用交替掩護進攻的方式,若在數軸上的點表示A,B兩人的位置,規定在前面的數大於後面的數,則是A>B,B>A交替出現。但現在假設軍中有一個膽小鬼,同時大家又都很照顧他,每次衝鋒都是讓他跟在後面,每當前面的人佔據一個新的位置,就把位置交給他,然後其他人再往前佔領新的位置。也就是A始終在B的前面,A向前邁進,B跟上,A把自己的位置交給B(即執行B= A操作),然後A 再前進佔領新的位置,B再跟上……直到佔領所有的陣地,前進結束。像這種兩個數一前一後逐步向某個位置逼近的方法稱之為迭代法。
迭代法也稱輾轉法,是一種不斷用變數的舊值遞推新值的過程,跟迭代法相對應的是直接法(或者稱為一次解法),即一次性解決問題。迭代演算法是用計算機解決問題的一種基該方法。它利用計算機運算速度快、適合做重複性操作的特點,讓計算機對一組指令(或一定步驟)進行重複執行,在每次執行這組指令(或這些步驟)時,都從變數的原值推出它的一個新值。
利用迭代演算法解決問題,需要做好以下三個方面的工作:
一、確定迭代變數。在可以用迭代演算法解決的問題中,至少存在一個直接或間接地不斷由舊值遞推出新值的變數,這個變數就是迭代變數。
二、建立迭代關係式。所謂迭代關係式,指如何從變數的前一個值推出其下一個值的公式(或關係)。迭代關係式的建立是解決迭代問題的關鍵,通常可以使用遞推或倒推的方法來完成。
三、對迭代過程進行控制。在什麼時候結束迭代過程?這是編寫迭代程式必須考慮的問題。不能讓迭代過程無休止地重複執行下去。迭代過程的控制通常可分為兩種情況:一種是所需的迭代次數是個確定的值,可以計算出來;另一種是所需的迭代次數無法確定。對於前一種情況,可以構建一個固定次數的迴圈來實現對迭代過程的控制;對於後一種情況,需要進一步分析出用來結束迭代過程的條件。 (摘自百度百科:http://baike.baidu.com/view/643093.htm)
參考程式碼如下:
/**
只考慮非負實數的算術平方根,
如果要考慮完全,則自己再修改
*/
#include <iostream>
#include <math.h>
using namespace std;
int main()
{
double a ;
cin>>a ;
double x = 1 ;
while(x*x - a > 0.0000001 || x*x - a < -0.0000001)
{
x = (x + a/x)/2 ;
}
cout<< fabs(x) ;
return 0;
}