資料結構之圖(鄰接表實現)(C++)
一、圖的鄰接表實現
1.實現了以頂點順序表、邊連結串列為儲存結構的鄰接表;
2.實現了圖的建立(有向/無向/圖/網)、邊的增刪操作、深度優先遞迴/非遞迴遍歷、廣度優先遍歷的演算法;
3.採用頂點物件列表、邊(弧)物件列表的方式,對圖的建立進行初始化;引用 "ObjArrayList.h"標頭檔案,標頭檔案可參看之前博文“資料結構之順序列表(支援物件元素)”程式碼;
4.深度優先遍歷分別採用遞迴/非遞迴演算法;非遞迴中用到的棧,引用"LinkStack.h"標頭檔案,標頭檔案可參看之前博文“資料結構之棧”程式碼;
5.廣度優先遍歷採用佇列方式實現;用到的佇列,引用 "LinkQueue.h"標頭檔案,標頭檔案可參看之前博文“資料結構之佇列”程式碼;
6.測試程式碼中以有向網的所有帶權邊作為邊的初始化資料,選擇圖型別(DG, UDG, DN, UDN)可建立成不同型別的圖。
7.優劣分析:
7.1.(優勢)鄰接表儲存結構,相比鄰接矩陣,消除了無鄰接關係頂點的邊儲存空間;
7.2.(優勢)鄰接表比鄰接矩陣更容易訪問某頂點的鄰接頂點;
7.3.(優勢)鄰接表比鄰接矩陣更易於統計邊總數,無需逐行逐列遍歷;
7.4.(劣勢)在確定兩頂點間是否有邊的搜尋過程中,鄰接表不如鄰接矩陣可直接定址快,反而需要頂點到邊鏈的遍歷;
7.5.(劣勢)鄰接矩陣在刪除頂點時,只需清除對應行列資料即可;而鄰接表在清除頂點指向的邊鏈後,還需遍歷整個邊表,清除所有鄰接於此頂點的邊結點;
7.6.(不足)鄰接表在統計有向圖出度時容易,只需遍歷依附此頂點的邊鏈;卻在統計其入度時,需要遍歷整個邊表,比較麻煩;可採用十字連結串列(鄰接表與逆鄰接表的結合)解決這個問題;
7.7.(不足)鄰接表在無向圖的儲存中,屬於行列對稱矩陣形式,因此會有一半重複的邊資料,故可採用鄰接多重表,只儲存一半邊,來優化儲存。
二、測試程式碼中的圖結構
深度優先遍歷序列(從 v1 頂點開始):
1.無向圖/網:v1-v2-v3-v5-v4-v6-v7
2.有向圖/網:v1-v2-v5-v3-v4-v6-v7
廣度優先遍歷序列(從 v2 頂點開始):
1.無向圖/網:v2-v1-v3-v5-v4-v6-v7
2.有向圖/網:v2-v5 後序無法遍歷
注:有向圖的遍歷 是遵循出度方向遍歷的,若無出度方向,則遍歷終止。
三、程式碼
//檔名:"GraphAdjList.h"
#pragma once
#ifndef GRAPHADJLISL_H_
#define GRAPHADJLISL_H_
#include <string>
#include "ObjArrayList.h"
using namespace std;
/*
. 圖(鄰接表實現) Graph Adjacency List
. 相關術語:
. 頂點 Vertex ; 邊 Arc ;權 Weight ;
. 有向圖 Digraph ;無向圖 Undigraph ;
. 有向網 Directed Network ;無向網 Undirected Network ;
. 儲存結構:
. 1.頂點表只能採用順序結構。(因為若採用鏈式結構,頂點結點定義與邊表結點定義就相互引用,無法定義)
. 2.邊表採用連結串列結構。
*/
class GraphAdjList
{
/*
. 邊表(連結串列)結點
*/
struct ArcNode
{
int adjVex; //鄰接頂點所在表中下標
int weight; //邊權重
ArcNode * next; //下一條邊
};
/*
. 頂點表(順序表)結點
*/
struct VNode
{
string name; //頂點名
ArcNode * first; //指向的第一個依附該頂點的頂點邊結點
};
public:
/*
. 圖 種類
*/
enum GraphType
{
DG, //有向圖,預設 0
UDG, //無向圖,預設 1
DN, //有向網,預設 2
UDN //無向網,預設 3
};
/*
. 邊(弧)資料,注:供外部初始化邊資料使用
*/
struct ArcData
{
string Tail; //弧尾
string Head; //弧頭
int Weight; //權重
};
private:
static const int _MAX_VERTEX_NUM = 10; //支援最大頂點數
VNode vexs[_MAX_VERTEX_NUM]; //頂點表
int vexs_visited[_MAX_VERTEX_NUM]; //頂點訪問標記陣列:0|未訪問 1|已訪問
int vexNum; //頂點數
int arcNum; //邊數
int type; //圖種類
void _CreateVexSet(ObjArrayList<string> * vexs); //建立頂點集合
void _CreateDG(ObjArrayList<ArcData> * arcsList); //建立有向圖
void _CreateUDG(ObjArrayList<ArcData> * arcsList); //建立無向圖
void _CreateDN(ObjArrayList<ArcData> * arcsList); //建立有向網
void _CreateUDN(ObjArrayList<ArcData> * arcsList); //建立無向網
int _Locate(string vertex); //定位頂點元素位置
void _InsertArc(int tail, int head, int weight); //插入邊(元操作,不分有向/無向)
void _DeleteArc(int tail, int head); //刪除邊(元操作,不分有向/無向)
void _DFS_R(int index); //深度優先遍歷 遞迴
void _DFS(int index); //深度優先遍歷 非遞迴
public:
GraphAdjList(int type); //建構函式:初始化圖種類
~GraphAdjList(); //解構函式
void Init(ObjArrayList<string> * vexs, ObjArrayList<ArcData> * arcsList); //初始化頂點、邊資料為 圖|網
void InsertArc(ArcData * arcData); //插入邊(含有向/無向操作)
void DeleteArc(ArcData * arcData); //刪除邊(含有向/無向操作)
void Display(); //顯示 圖|網
void Display_DFS_R(string *vertex); //從指定頂點開始,深度優先 遞迴 遍歷
void Display_DFS(string *vertex); //從指定頂點開始,深度優先 非遞迴 遍歷
void Display_BFS(string *vertex); //從指定頂點開始,廣度優先遍歷
};
//檔名:"GraphAdjList.cpp"
#include "stdafx.h"
#include <string>
#include "ObjArrayList.h"
#include "LinkQueue.h"
#include "LinkStack.h"
#include "GraphAdjList.h"
using namespace std;
GraphAdjList::GraphAdjList(int type)
{
/*
. 建構函式:初始化圖型別
*/
this->type = type;
this->vexNum = 0;
this->arcNum = 0;
}
GraphAdjList::~GraphAdjList()
{
/*
. 解構函式:銷燬圖
*/
}
void GraphAdjList::Init(ObjArrayList<string> * vexs, ObjArrayList<ArcData> * arcsList)
{
/*
. 初始化頂點、邊資料,並構建 圖|網
. 入參:
. vexs: 頂點 列表
. arcsList: 邊資料 列表
*/
//1.建立頂點集
_CreateVexSet(vexs);
//2.根據圖型別,建立指定的圖
switch (this->type)
{
case DG:
_CreateDG(arcsList); break;
case UDG:
_CreateUDG(arcsList); break;
case DN:
_CreateDN(arcsList); break;
case UDN:
_CreateUDN(arcsList); break;
default:
break;
}
}
void GraphAdjList::_CreateVexSet(ObjArrayList<string> * vexs)
{
/*
. 建立頂點集合
*/
string vertex = "";
//頂點最大數校驗
if (vexs->Length() > this->_MAX_VERTEX_NUM)
{
return;
}
//遍歷頂點表,無重複插入頂點,並計數頂點數
for (int i = 0; i < vexs->Length(); i++)
{
vertex = *vexs->Get(i);
if (_Locate(vertex) == -1)
{
this->vexs[this->vexNum].name = vertex;
this->vexs[this->vexNum].first = NULL;
this->vexNum++;
}
}
}
void GraphAdjList::_CreateDG(ObjArrayList<ArcData> * arcsList)
{
/*
. 建立有向圖
. 鄰接矩陣為 非對稱邊
*/
//初始化臨時 邊物件
ArcData * arcData = NULL;
//初始化 Tail Head 頂點下標索引
int tail = 0, head = 0;
//遍歷邊資料列表
for (int i = 0; i < arcsList->Length(); i++)
{
//按序獲取邊(弧)
arcData = arcsList->Get(i);
//定位(或設定)邊的兩端頂點位置
tail = _Locate(arcData->Tail);
head = _Locate(arcData->Head);
//插入邊
_InsertArc(tail, head, 0);
}
}
void GraphAdjList::_CreateUDG(ObjArrayList<ArcData> * arcsList)
{
/*
. 建立無向圖
. 鄰接矩陣為 對稱邊
*/
//初始化臨時 邊物件
ArcData * arcData = NULL;
//初始化 Tail Head 頂點下標索引
int tail = 0, head = 0;
//遍歷邊資料列表
for (int i = 0; i < arcsList->Length(); i++)
{
//按序獲取邊(弧)
arcData = arcsList->Get(i);
//定位(或設定)邊的兩端頂點位置
tail = _Locate(arcData->Tail);
head = _Locate(arcData->Head);
//插入對稱邊
_InsertArc(tail, head, 0);
_InsertArc(head, tail, 0);
}
}
void GraphAdjList::_CreateDN(ObjArrayList<ArcData> * arcsList)
{
/*
. 建立有向網
. 鄰接矩陣為 非對稱矩陣
*/
//初始化臨時 邊物件
ArcData * arcData = NULL;
//初始化 Tail Head 頂點下標索引
int tail = 0, head = 0;
//遍歷邊資料列表
for (int i = 0; i < arcsList->Length(); i++)
{
//按序獲取邊(弧)
arcData = arcsList->Get(i);
//定位(或設定)邊的兩端頂點位置
tail = _Locate(arcData->Tail);
head = _Locate(arcData->Head);
//插入邊
_InsertArc(tail, head, arcData->Weight);
}
}
void GraphAdjList::_CreateUDN(ObjArrayList<ArcData> * arcsList)
{
/*
. 建立無向網
. 鄰接矩陣為 對稱矩陣
*/
//初始化臨時 邊物件
ArcData * arcData = NULL;
//初始化 Tail Head 頂點下標索引
int tail = 0, head = 0;
//遍歷邊資料列表
for (int i = 0; i < arcsList->Length(); i++)
{
//按序獲取邊(弧)
arcData = arcsList->Get(i);
//定位(或設定)邊的兩端頂點位置
tail = _Locate(arcData->Tail);
head = _Locate(arcData->Head);
//插入對稱邊
_InsertArc(tail, head, arcData->Weight);
_InsertArc(head, tail, arcData->Weight);
}
}
int GraphAdjList::_Locate(string vertex)
{
/*
. 定位頂點元素位置
. 後期可改成【字典樹】,頂點數超過100個後定位頂點位置可更快
*/
//遍歷定位頂點位置
for (int i = 0; i < this->_MAX_VERTEX_NUM; i++)
{
if (vertex == this->vexs[i].name)
{
return i;
}
}
//cout << endl << "頂點[" << vertex << "]不存在。" << endl;
return -1;
}
void GraphAdjList::_InsertArc(int tail, int head, int weight)
{
/*
. 插入邊(元操作,不分有向/無向)
*/
//邊結點指標:初始化為 弧尾 指向的第一個邊
ArcNode * p = this->vexs[tail].first;
//初始化 前一邊結點的指標
ArcNode * q = NULL;
//重複邊布林值
bool exist = false;
//1.邊的重複性校驗
while (p != NULL)
{
//若已存在該邊,則標記為 存在 true
if (p->adjVex == head)
{
exist = true;
break;
}
//若不是該邊,繼續下一個邊校驗
q = p;
p = p->next;
}
//2.1.如果邊存在,則跳過,不做插入
if (exist)
return;
//2.2.邊不存在時,建立邊
ArcNode * newArc = new ArcNode();
newArc->adjVex = head;
newArc->weight = weight;
newArc->next = NULL;
//3.1.插入第一條邊
if (q == NULL)
{
this->vexs[tail].first = newArc;
}
//3.2.插入後序邊
else
{
q->next = newArc;
}
//4.邊 計數
this->arcNum++;
}
void GraphAdjList::InsertArc(ArcData * arcData)
{
/*
. 插入邊(含有向/無向操作)
*/
//初始化 Tail Head 頂點下標索引
int tail = 0, head = 0;
tail = _Locate(arcData->Tail);
head = _Locate(arcData->Head);
//根據圖型別,插入邊
switch (this->type)
{
case DG:
_InsertArc(tail, head, 0);
break;
case UDG:
_InsertArc(tail, head, 0);
_InsertArc(head, tail, 0);
break;
case DN:
_InsertArc(tail, head, arcData->Weight);
break;
case UDN:
_InsertArc(tail, head, arcData->Weight);
_InsertArc(head, tail, arcData->Weight);
break;
default:
break;
}
}
void GraphAdjList::_DeleteArc(int tail, int head)
{
/*
. 刪除邊(元操作,不分有向/無向)
*/
//邊結點指標:初始化為 弧尾 指向的第一個邊
ArcNode * p = this->vexs[tail].first;
//初始化 前一邊結點的指標
ArcNode * q = NULL;
//1.遍歷查詢邊
while (p != NULL)
{
//若存在該邊,則結束迴圈
if (p->adjVex == head)
{
break;
}
//若不是該邊,繼續下一個邊
q = p;
p = p->next;
}
//2.1.邊不存在
if (p == NULL)
{
cout << endl << "邊[" << this->vexs[head].name << "->" << this->vexs[head].name << "]不存在。" << endl;
return;
}
//2.2.邊存在,刪除邊
//2.2.1.若為第一條邊
if (q == NULL)
{
this->vexs[tail].first = p->next;
}
//2.2.2.非第一條邊
else
{
q->next = p->next;
}
//3.釋放 p
delete p;
}
void GraphAdjList::DeleteArc(ArcData * arcData)
{
/*
. 刪除邊(含有向/無向操作)
*/
//初始化 Tail Head 頂點下標索引
int tail = 0, head = 0;
tail = _Locate(arcData->Tail);
head = _Locate(arcData->Head);
//根據圖型別,刪除邊
switch (this->type)
{
case DG:
_DeleteArc(tail, head);
break;
case UDG:
_DeleteArc(tail, head);
_DeleteArc(head, tail);
break;
case DN:
_DeleteArc(tail, head);
break;
case UDN:
_DeleteArc(tail, head);
_DeleteArc(head, tail);
break;
default:
break;
}
}
void GraphAdjList::Display()
{
/*
. 顯示 圖|網
*/
//初始化邊表結點指標
ArcNode * p = NULL;
cout << endl << "鄰接表:" << endl;
//遍歷頂點表
for (int i = 0; i < this->_MAX_VERTEX_NUM; i++)
{
//空頂點(在刪除頂點的操作後會出現此類情況)
if (this->vexs[i].name == "")
{
continue;
}
//輸出頂點
cout << "[" << i << "]" << this->vexs[i].name << " ";
//遍歷輸出邊頂點
p = this->vexs[i].first;
while (p != NULL)
{
cout << "[" << p->adjVex << "," << p->weight << "] ";
p = p->next;
}
cout << endl;
}
}
void GraphAdjList::_DFS_R(int index)
{
/*
. 深度優先遍歷 遞迴
*/
//1.訪問頂點,並標記已訪問
cout << this->vexs[index].name << " ";
this->vexs_visited[index] = 1;
//2.遍歷訪問其相鄰頂點
ArcNode * p = this->vexs[index].first;
int adjVex = 0;
while (p != NULL)
{
adjVex = p->adjVex;
//當頂點未被訪問過時,可訪問
if (this->vexs_visited[adjVex] != 1)
{
_DFS_R(adjVex);
}
p = p->next;
}
}
void GraphAdjList::Display_DFS_R(string *vertex)
{
/*
. 從指定頂點開始,深度優先 遞迴 遍歷
*/
//1.判斷頂點是否存在
int index = _Locate(*vertex);
if (index == -1)
return;
//2.初始化頂點訪問陣列
for (int i = 0; i < this->_MAX_VERTEX_NUM; i++)
{
this->vexs_visited[i] = 0;
}
//3.深度優先遍歷 遞迴
cout << "深度優先遍歷(遞迴):(從頂點" << *vertex << "開始)" << endl;
_DFS_R(index);
}
void GraphAdjList::_DFS(int index)
{
/*
. 深度優先遍歷 非遞迴
*/
//1.訪問第一個結點,並標記為 已訪問
cout << this->vexs[index].name << " ";
vexs_visited[index] = 1;
//初始化 邊結點 棧
LinkStack<ArcNode> * s = new LinkStack<ArcNode>();
//初始化邊結點 指標
ArcNode * p = this->vexs[index].first;
//2.尋找下一個(未訪問的)鄰接結點
while (!s->Empty() || p != NULL)
{
//2.1.未訪問過,則訪問 (縱向遍歷)
if (vexs_visited[p->adjVex] != 1)
{
//訪問結點,標記為訪問,並將其入棧
cout << this->vexs[p->adjVex].name << " ";
vexs_visited[p->adjVex] = 1;
s->Push(p);
//指標 p 移向 此結點的第一個鄰接結點
p = this->vexs[p->adjVex].first;
}
//2.2.已訪問過,移向下一個邊結點 (橫向遍歷)
else
p = p->next;
//3.若無鄰接點,則返回上一結點層,並出棧邊結點
if (p == NULL)
{
p = s->Pop();
}
}
//釋放 棧
delete s;
}
void GraphAdjList::Display_DFS(string *vertex)
{
/*
. 從指定頂點開始,深度優先 非遞迴 遍歷
*/
//1.判斷頂點是否存在
int index = _Locate(*vertex);
if (index == -1)
return;
//2.初始化頂點訪問陣列
for (int i = 0; i < this->_MAX_VERTEX_NUM; i++)
{
this->vexs_visited[i] = 0;
}
//3.深度優先遍歷 遞迴
cout << "深度優先遍歷(非遞迴):(從頂點" << *vertex << "開始)" << endl;
_DFS(index);
}
void GraphAdjList::Display_BFS(string *vertex)
{
/*
. 從指定頂點開始,廣度優先遍歷
*/
//1.判斷頂點是否存在
int index = _Locate(*vertex);
if (index == -1)
return;
//2.初始化頂點訪問陣列
for (int i = 0; i < this->_MAX_VERTEX_NUM; i++)
{
this->vexs_visited[i] = 0;
}
//3.廣度優先遍歷
cout << "廣度優先遍歷:(從頂點" << *vertex << "開始)" << endl;
//3.1.初始化佇列
LinkQueue<int> * vexQ = new LinkQueue<int>();
//3.2.訪問開始頂點,並標記訪問、入隊
cout << this->vexs[index].name << " ";
this->vexs_visited[index] = 1;
vexQ->EnQueue(new int(index));
//3.3.出隊,並遍歷鄰接頂點(下一層次),訪問後入隊
ArcNode * p = NULL;
int adjVex = 0;
while (vexQ->GetHead() != NULL)
{
index = *vexQ->DeQueue();
p = this->vexs[index].first;
//遍歷鄰接頂點
while (p != NULL)
{
adjVex = p->adjVex;
//未訪問過的鄰接頂點
if (this->vexs_visited[adjVex] != 1)
{
//訪問頂點,並標記訪問、入隊
cout << this->vexs[adjVex].name << " ";
this->vexs_visited[adjVex] = 1;
vexQ->EnQueue(new int(adjVex));
}
p = p->next;
}
}
//4.釋放佇列
int * e;
while (vexQ->GetHead() != NULL)
{
e = vexQ->DeQueue();
delete e;
}
delete vexQ;
}
//檔名:"GraphAdjList_Test.cpp"
#include "stdafx.h"
#include <iostream>
#include "GraphAdjList.h"
#include "ObjArrayList.h"
using namespace std;
int main()
{
//初始化頂點資料
string * v1 = new string("v1");
string * v2 = new string("v2");
string * v3 = new string("v3");
string * v4 = new string("v4");
string * v5 = new string("v5");
string * v6 = new string("v6");
string * v7 = new string("v7");
ObjArrayList<string> * vexs = new ObjArrayList<string>();
vexs->Add(v1);
vexs->Add(v2);
vexs->Add(v3);
vexs->Add(v4);
vexs->Add(v5);
vexs->Add(v6);
vexs->Add(v7);
//初始化邊(弧)資料
GraphAdjList::ArcData * arc1 = new GraphAdjList::ArcData{ "v1", "v2", 2 };
GraphAdjList::ArcData * arc2 = new GraphAdjList::ArcData{ "v1", "v3", 3 };
GraphAdjList::ArcData * arc3 = new GraphAdjList::ArcData{ "v1", "v4", 4 };
GraphAdjList::ArcData * arc4 = new GraphAdjList::ArcData{ "v3", "v1", 5 };
GraphAdjList::ArcData * arc5 = new GraphAdjList::ArcData{ "v3", "v2", 6 };
GraphAdjList::ArcData * arc6 = new GraphAdjList::ArcData{ "v3", "v5", 7 };
GraphAdjList::ArcData * arc7 = new GraphAdjList::ArcData{ "v2", "v5", 8 };
GraphAdjList::ArcData * arc8 = new GraphAdjList::ArcData{ "v4", "v6", 9 };
GraphAdjList::ArcData * arc9 = new GraphAdjList::ArcData{ "v4", "v7", 9 };
GraphAdjList::ArcData * arc10 = new GraphAdjList::ArcData{ "v6", "v7", 9 };
ObjArrayList<GraphAdjList::ArcData> * arcsList = new ObjArrayList<GraphAdjList::ArcData>();
arcsList->Add(arc1);
arcsList->Add(arc2);
arcsList->Add(arc3);
arcsList->Add(arc4);
arcsList->Add(arc5);
arcsList->Add(arc6);
arcsList->Add(arc7);
arcsList->Add(arc8);
arcsList->Add(arc9);
arcsList->Add(arc10);
//測試1:無向圖
cout << endl << "無向圖初始化:" << endl;
GraphAdjList * udg = new GraphAdjList(GraphAdjList::UDG);
udg->Init(vexs, arcsList);
udg->Display();
//1.1.深度優先遍歷
cout << endl << "無向圖深度優先遍歷序列:(遞迴)" << endl;
udg->Display_DFS_R(v1);
cout << endl << "無向圖深度優先遍歷序列:(非遞迴)" << endl;
udg->Display_DFS(v1);
//1.2.廣度優先遍歷
cout << endl << "無向圖廣度優先遍歷序列:" << endl;
udg->Display_BFS(v2);
//1.3.插入新邊
cout << endl << "無向圖新邊:" << endl;
udg->InsertArc(new GraphAdjList::ArcData{ "v7", "v1", 8 });
udg->Display();
//1.4.刪除邊
cout << endl << "無向圖刪除邊arc9:" << endl;
udg->DeleteArc(arc9);
udg->Display();
//測試2:有向圖
cout << endl << "有向圖:" << endl;
GraphAdjList * dg = new GraphAdjList(GraphAdjList::DG);
dg->Init(vexs, arcsList);
dg->Display();
//2.1.深度優先遍歷
cout << endl << "有向圖深度優先遍歷序列:(遞迴)" << endl;
dg->Display_DFS_R(v1);
cout << endl << "有向圖深度優先遍歷序列:(非遞迴)" << endl;
dg->Display_DFS(v1);
//2.2.廣度優先遍歷
cout << endl << "有向圖廣度優先遍歷序列:" << endl;
dg->Display_BFS(v2);
//測試:無向網
cout << endl << "無向網:" << endl;
GraphAdjList * udn = new GraphAdjList(GraphAdjList::UDN);
udn->Init(vexs, arcsList);
udn->Display();
//測試:有向網
cout << endl << "有向網:" << endl;
GraphAdjList * dn = new GraphAdjList(GraphAdjList::DN);
dn->Init(vexs, arcsList);
dn->Display();
return 0;
}