1. 程式人生 > >NYOJ題目36-最長公共子序列(經典動態規劃題)

NYOJ題目36-最長公共子序列(經典動態規劃題)

最長公共子序列

時間限制:3000 ms  |  記憶體限制:65535 KB 難度:3
描述
咱們就不拐彎抹角了,如題,需要你做的就是寫一個程式,得出最長公共子序列。
tip:最長公共子序列也稱作最長公共子串(不要求連續),英文縮寫為LCS(Longest Common Subsequence)。其定義是,一個序列 S ,如果分別是兩個或多個已知序列的子序列,且是所有符合此條件序列中最長的,則 S 稱為已知序列的最長公共子序列。
輸入
第一行給出一個整數N(0<N<100)表示待測資料組數
接下來每組資料兩行,分別為待測的兩組字串。每個字串長度不大於1000.
輸出
每組測試資料輸出一個整數,表示最長公共子序列長度。每組結果佔一行。
樣例輸入
2
asdf
adfsd
123abc
abc123abc
樣例輸出
3
6


使用動態規劃,最主要的步驟是要分析出子問題及其重疊問題來。 


對於此題,每一組字串的長度 對於 尋找最長子序列的方法,並不會產生什麼影響。例如長度為4、6與8、10的兩組字串,它們分別尋找最長子序列的方法並沒有什麼本質區別。正是因為這個原因,我們可以把N、M長度的字串問題可以劃分為N-1、M-1長度的問題,甚至還可以繼續劃分,這樣實際上就產生了M+N個子問題(因為每次都是M或者N減去1而產生一個子問題),但是在這些子問題中,有很多重複地子問題,所以如果用遞迴解得話,會做很多重複地工作。更簡單的方式是採用一個二維陣列LCS[m][n]來記錄所有可能的M、N取值組合下的最長公共子序列長度。 


進一步分析,如何描述子問題?要分兩種情況。 


第一,如果str1[M]=str2[N]的情況下,最長公共子序列長度應該就是M-1、N-1長度的字串組的最長公共子序列長度加上1。用公式表示就是LCS[M][N]=LCS[M-1][N-1]+1。 


第二,如果str1[M]!=str2[N]的情況下,最長公共子序列長度應該在M-1、N 以及 M、N-1 這兩個子問題之中最大公子序列長度的大者。用公式表示就是LCS[M][N]= MAX ( LCS[M-1][N] , LCS[M][N-1] )。 

#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;

int main()
{
    int N,i,j;
    scanf("%d",&N);
    while(N--)
    {
        char str1[1001],str2[1001];
        scanf("%s%s",str1,str2);
        int len1=strlen(str1),len2=strlen(str2);
        int LCS[len1+1][len2+1];
        memset(LCS,0,sizeof(LCS));
        for(i=1;i<=len1;i++)
        {
            for(j=1;j<=len2;j++)
            {
                if(str1[i-1]==str2[j-1])
                	LCS[i][j] = LCS[i-1][j-1] + 1;
                else
                	LCS[i][j] = LCS[i][j-1]>LCS[i-1][j] ? LCS[i][j-1] : LCS[i-1][j];
                
            }
			        
        }
        printf("%d\n",LCS[len1][len2]);
    }
}


對最長公共子序列的改進:

上面的做法只能夠求出最長公共子序列的個數,那麼如何輸出最長公共子序列是那幾個呢?

這裡我們在迴圈中,加入一個數組變數b[i][j]來標記三種不同的搜尋方向,再呼叫函式對其生成。