道格拉斯-普克 Douglas-Peuker(DP演算法)-python實現
阿新 • • 發佈:2019-02-15
#-*- coding:utf-8 -*- """ 道格拉斯演算法的實現 程式需要安裝shapely模組 """ import math from shapely import wkt,geometry class Point: """點類""" x=0.0 y=0.0 index=0 #點在線上的索引 def __init__(self,x,y,index): self.x=x self.y=y self.index=index class Douglas: """道格拉斯演算法類""" points=[] D=1 #容差 def readPoint(self): """生成點要素""" g=wkt.loads("LINESTRING(1 4,2 3,4 2,6 6,7 7,8 6,9 5,10 10)") coords=g.coords for i in range(len(coords)): self.points.append(Point(coords[i][0],coords[i][1],i)) def compress(self,p1,p2): """具體的抽稀演算法""" swichvalue=False #一般式直線方程係數 A*x+B*y+C=0 A=(p1.y-p2.y)/math.sqrt(math.pow(p1.y-p2.y,2)+math.pow(p1.x-p2.x,2)) B=(p2.x-p1.x)/math.sqrt(math.pow(p1.y-p2.y,2)+math.pow(p1.x-p2.x,2)) C=(p1.x*p2.y-p2.x*p1.y)/math.sqrt(math.pow(p1.y-p2.y,2)+math.pow(p1.x-p2.x,2)) m=self.points.index(p1) n=self.points.index(p2) distance=[] middle=None if(n==m+1): return #計算中間點到直線的距離 for i in range(m+1,n): d=abs(A*self.points[i].x+B*self.points[i].y+C)/math.sqrt(math.pow(A,2)+math.pow(B,2)) distance.append(d) dmax=max(distance) if dmax>self.D: swichvalue=True else: swichvalue=False if(not swichvalue): for i in range(m+1,n): del self.points[i] else: for i in range(m+1,n): if(abs(A*self.points[i].x+B*self.points[i].y+C)/math.sqrt(math.pow(A,2)+math.pow(B,2))==dmax): middle=self.points[i] self.compress(p1,middle) self.compress(middle,p2) def printPoint(self): """列印資料點""" for p in self.points: print "%d,%f,%f"%(p.index,p.x,p.y) def main(): """測試""" #p=Point(20,20,1) #print '%d,%d,%d'%(p.x,p.x,p.index) d=Douglas() d.readPoint() d.printPoint() d.compress(d.points[0],d.points[len(d.points)-1]) print "========================\n" d.printPoint() if __name__=='__main__': main()
部分修改後:
#-*- coding:utf-8 -*- """ 道格拉斯演算法的實現 程式需要安裝shapely模組 """ import math from shapely import wkt,geometry import matplotlib.pyplot as plt class Point: """點類""" x=0.0 y=0.0 index=0 #點在線上的索引 def __init__(self,x,y,index): self.x=x self.y=y self.index=index class Douglas: """道格拉斯演算法類""" points=[] D=1 #容差 def readPoint(self): """生成點要素""" g=wkt.loads("LINESTRING(1 4,2 3,4 2,6 6,7 7,8 6,9 5,10 10)") coords=g.coords for i in range(len(coords)): self.points.append(Point(coords[i][0],coords[i][1],i)) def compress(self,p1,p2): """具體的抽稀演算法""" swichvalue=False #一般式直線方程係數 A*x+B*y+C=0,利用點斜式 #A=(p1.y-p2.y)/math.sqrt(math.pow(p1.y-p2.y,2)+math.pow(p1.x-p2.x,2)) A=(p1.y-p2.y) #B=(p2.x-p1.x)/math.sqrt(math.pow(p1.y-p2.y,2)+math.pow(p1.x-p2.x,2)) B=(p2.x-p1.x) #C=(p1.x*p2.y-p2.x*p1.y)/math.sqrt(math.pow(p1.y-p2.y,2)+math.pow(p1.x-p2.x,2)) C=(p1.x*p2.y-p2.x*p1.y) m=self.points.index(p1) n=self.points.index(p2) distance=[] middle=None if(n==m+1): return #計算中間點到直線的距離 for i in range(m+1,n): d=abs(A*self.points[i].x+B*self.points[i].y+C)/math.sqrt(math.pow(A,2)+math.pow(B,2)) distance.append(d) dmax=max(distance) if dmax>self.D: swichvalue=True else: swichvalue=False if(not swichvalue): for i in range(m+1,n): del self.points[i] else: for i in range(m+1,n): if(abs(A*self.points[i].x+B*self.points[i].y+C)/math.sqrt(math.pow(A,2)+math.pow(B,2))==dmax): middle=self.points[i] self.compress(p1,middle) self.compress(middle,p2) def printPoint(self): """列印資料點""" for p in self.points: print "%d,%f,%f"%(p.index,p.x,p.y) def main(): """測試""" #p=Point(20,20,1) #print '%d,%d,%d'%(p.x,p.x,p.index) d=Douglas() d.readPoint() #d.printPoint() #結果圖形的繪製,抽稀之前繪製 fig=plt.figure() a1=fig.add_subplot(121) dx=[] dy=[] for i in range(len(d.points)): dx.append(d.points[i].x) dy.append(d.points[i].y) a1.plot(dx,dy,color='g',linestyle='-',marker='+') d.compress(d.points[0],d.points[len(d.points)-1]) #抽稀之後繪製 dx1=[] dy1=[] a2=fig.add_subplot(122) for p in d.points: dx1.append(p.x) dy1.append(p.y) a2.plot(dx1,dy1,color='r',linestyle='-',marker='+') #print "========================\n" #d.printPoint() plt.show() if __name__=='__main__': main()
結果: