從頭學pytorch(十六):VGG NET
阿新 • • 發佈:2020-01-11
VGG
AlexNet在Lenet的基礎上增加了幾個卷積層,改變了卷積核大小,每一層輸出通道數目等,並且取得了很好的效果.但是並沒有提出一個簡單有效的思路.
VGG做到了這一點,提出了可以通過重複使⽤簡單的基礎塊來構建深度學習模型的思路.
論文地址:https://arxiv.org/abs/1409.1556
vgg的結構如下所示:
上圖給出了不同層數的vgg的結構.也就是常說的vgg16,vgg19等等.
VGG BLOCK
vgg的設計思路是,通過不斷堆疊3x3的卷積核,不斷加深模型深度.vgg net證明了加深模型深度對提高模型的學習能力是一個很有效的手段.
看上圖就能發現,連續的2個3x3卷積,感受野和一個5x5卷積是一樣的,但是前者有兩次非線性變換,後者只有一次!,這就是連續堆疊小卷積核能提高
vgg的基礎組成模組,每一個卷積層都由n個3x3卷積後面接2x2的最大池化.池化層的步幅為2.從而卷積層卷積後,寬高不變,池化後,寬高減半.
我們可以有以下程式碼:
def make_layers(in_channels,cfg): layers = [] previous_channel = in_channels #上一層的輸出的channel數量 for v in cfg: if v == 'M': layers.append(nn.MaxPool2d(kernel_size=2,stride=2)) else: layers.append(nn.Conv2d(previous_channel,v,kernel_size=3,padding=1)) layers.append(nn.ReLU()) previous_channel = v conv = nn.Sequential(*layers) return conv cfgs = { 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], }
cfgs定義了不同的vgg模型的結構,比如'A'代表vgg11. 數字代表卷積後的channel數. 'M'代表Maxpool
我們可以給出模型定義
class VGG(nn.Module): def __init__(self,input_channels,cfg,num_classes=10, init_weights=True): super(VGG, self).__init__() self.conv = make_layers(input_channels,cfg) # torch.Size([1, 512, 7, 7]) self.fc = nn.Sequential( nn.Linear(512*7*7,4096), nn.ReLU(), nn.Linear(4096,4096), nn.ReLU(), nn.Linear(4096,num_classes) ) def forward(self, img): feature = self.conv(img) output = self.fc(feature.view(img.shape[0], -1)) return output
卷積層的輸出可由以下測試程式碼得出
# conv = make_layers(1,cfgs['A'])
# X = torch.randn((1,1,224,224))
# out = conv(X)
# #print(out.shape)
載入資料
batch_size,num_workers=4,4
train_iter,test_iter = learntorch_utils.load_data(batch_size,num_workers,resize=224)
這裡batch_size調到8我的視訊記憶體就不夠了...
定義模型
net = VGG(1,cfgs['A']).cuda()
定義損失函式
loss = nn.CrossEntropyLoss()
定義優化器
opt = torch.optim.Adam(net.parameters(),lr=0.001)
定義評估函式
def test():
acc_sum = 0
batch = 0
for X,y in test_iter:
X,y = X.cuda(),y.cuda()
y_hat = net(X)
acc_sum += (y_hat.argmax(dim=1) == y).float().sum().item()
batch += 1
#print('acc_sum %d,batch %d' % (acc_sum,batch))
return 1.0*acc_sum/(batch*batch_size)
訓練
num_epochs = 3
def train():
for epoch in range(num_epochs):
train_l_sum,batch,acc_sum = 0,0,0
start = time.time()
for X,y in train_iter:
# start_batch_begin = time.time()
X,y = X.cuda(),y.cuda()
y_hat = net(X)
acc_sum += (y_hat.argmax(dim=1) == y).float().sum().item()
l = loss(y_hat,y)
opt.zero_grad()
l.backward()
opt.step()
train_l_sum += l.item()
batch += 1
mean_loss = train_l_sum/(batch*batch_size) #計算平均到每張圖片的loss
start_batch_end = time.time()
time_batch = start_batch_end - start
print('epoch %d,batch %d,train_loss %.3f,time %.3f' %
(epoch,batch,mean_loss,time_batch))
print('***************************************')
mean_loss = train_l_sum/(batch*batch_size) #計算平均到每張圖片的loss
train_acc = acc_sum/(batch*batch_size) #計算訓練準確率
test_acc = test() #計算測試準確率
end = time.time()
time_per_epoch = end - start
print('epoch %d,train_loss %f,train_acc %f,test_acc %f,time %f' %
(epoch + 1,mean_loss,train_acc,test_acc,time_per_epoch))
train()
4G的GTX 1050顯示卡,訓練一個epoch大概一個多小時.
完整程式碼:https://github.com/sdu2011/learn_pyto