線性迴歸 梯度下降演算法 overshot the minimun現象
在梯度下降演算法中,理論上有一個步長steep需要我們設定。steep的設定非常重要,如果設定不當,我們的梯度下降演算法可能就得不到我們想要的結果。
一:步長不當導致的問題
如果步長太短,很顯然我們訓練集訓練的時間就會加長。如果訓練集比較多,這也是致命的。
如果步長太長,可能出現Overshoot the minimun(越過極小值點)現象。甚至梯度下降演算法無法收斂,找不到我們要的極小值。
二:tensorflow 解決步長問題
line search (數學渣渣,沒看懂)演算法能解決步長問題。結果是在不斷逼近最小值時,步長會不斷減小。
相關推薦
線性迴歸 梯度下降演算法 overshot the minimun現象
在梯度下降演算法中,理論上有一個步長steep需要我們設定。steep的設定非常重要,如果設定不當,我們的梯度下降演算法可能就得不到我們想要的結果。 一:步長不當導致的問題 如果步長太短,很顯然我們訓練集訓練的時間就會加長。如果訓練集比較多,這也是致命的。 如果步長太長,可能出現Oversho
線性迴歸梯度下降 Octave
首先對一堆樣本點我們假設目標函式為: 在Gradient Descent Algorithm中,我們利用不斷推導得到兩個對此演算法非常重要的公式,一個是J(θ)是代價函式: 使用偏導數的方式使得theta的值逐步取得滿足當前代價函式的最小值,
線性迴歸梯度下降
import numpy as npimport matplotlib.pyplot as pltnp.random.seed(666)x = 2 * np.random.random(size=100)y = x*3. + 4. + np.random.normal(size=100)X = x.resha
機器學習--線性迴歸--梯度下降的實現
## 機器學習--線性單元迴歸--單變數梯度下降的實現 ### 【線性迴歸】 ```text 如果要用一句話來解釋線性迴歸是什麼的話,那麼我的理解是這樣子的: **線性迴歸,是從大量的資料中找出最優的線性(y=ax+b)擬合函式,通過資料確定函式中的未知引數,進而進行後續操作(預測) **迴歸的概念是從統
斯坦福CS229機器學習課程筆記一:線性迴歸與梯度下降演算法
機器學習三要素 機器學習的三要素為:模型、策略、演算法。 模型:就是所要學習的條件概率分佈或決策函式。線性迴歸模型 策略:按照什麼樣的準則學習或選擇最優的模型。最小化均方誤差,即所謂的 least-squares(在spss裡線性迴歸對應的模組就叫OLS即Ordinary Least Squares):
梯度下降、線性迴歸演算法中的梯度下降、為什麼要用梯度下降演算法。
梯度 梯度是一個向量。 函式上某點的梯度的方向:導數最大的方向。梯度的大小(梯度的模):該點的導數的大小。 梯度下降 對於一般二次函式而言: 由於梯度的方向是導數最大的方向,順著梯度方向走,函式值就變大的最快,順著梯度的反方向,那麼函式值減小最快的方向,導數也慢慢減小。當導數減為
Python實現線性迴歸2,梯度下降演算法
接上篇 4.梯度下降演算法 《斯坦福大學公開課 :機器學習課程》吳恩達講解第二課時,是直接從梯度下降開始講解,最後採用向量和矩陣的方式推導瞭解析解,國內很多培訓視訊是先講解析解後講梯度下降,個人認為梯度下降演算法更為重要,它是很多演算法(邏輯迴歸、神經網路)都可
線性迴歸模型採用梯度下降演算法求最優解
本人學習人工智慧之深度學習已有一段時間,第一個機器學習演算法就是梯度下降演算法,本部落格將詳細闡述線性迴歸模型採用梯度下降演算法求得最優解。 本文將從運用以下流程圖講解SGD: 1、線性迴歸模型 2、代價函式 3、使用梯度下降最小化代價函式 第一部分:
線性迴歸、梯度下降演算法與 tensorflow
舉個栗子 考慮一個二手房交易記錄資料集. 已知房屋面積,臥室數量和交易價格: 根據這個資料集,要求我們估算當前某個給定房屋價格. 我們應該怎麼做? 線性迴歸 迴歸就是根據已知資料來預測另一個數值型資料的目標值. 假設特徵和結果滿足線性關係: h(x
使用梯度下降演算法來求解線性迴歸模型
廢話 求解線性迴歸模型的解析解可以直接使用公式,這節可以使用梯度下降演算法來求解這類問題的優化問題: 原理的東西不想說了 ,總之機器學習的一般思路都是: 構建模型(也就是你想建立什麼樣的預測函式
線性迴歸及梯度下降演算法詳解
一、線性迴歸問題 迴歸最簡單的定義是,給出一個點集D,用一個函式去擬合這個點集,並且使得點集與擬合函式間的誤差最小,如果這個函式曲線是一條直線,那就被稱為線性迴歸,如果曲線是一條二次曲線,就被稱為二次迴歸。 總的來說,迴歸的目的就是建立一個迴歸方程用
《機器學習實戰》學習筆記(四)之Logistic(上)基礎理論及演算法推導、線性迴歸,梯度下降演算法
轉載請註明作者和出處:http://blog.csdn.net/john_bh/ 執行平臺: Windows Python版本: Python3.6 IDE: Sublime text3 一、概述 Logistic迴歸是統計學習中的經典
邏輯迴歸中如何應用梯度下降演算法與損失函式
前面一篇部落格介紹了關於梯度下降演算法來由以及說明了為什麼梯度的負方向就是梯度下降最快方向,本文將會在上文的知識下簡述在邏輯迴歸(Logistic Regression)中為什麼可以使用以及如何使用梯度下降演算法。 梯度下降演算法是個比較簡單容易理解的演算法,就像吳老師或很
梯度下降演算法過程詳細解讀
看了很多博文,一談到梯度下降,大多都在畫圖,類比“下山”。對於一開始想要了解“梯度下降”是個什麼玩意兒時,這種類比法是非常有助於理解的。但是,當我大概知道了梯度下降是什麼東西之後,我就好奇了,梯度下降究竟是怎樣尋找到模型的最優引數的?不能一想到梯度下降,腦海中就只有“下山”的畫面,“下山”不是目的,目的在
吳恩達機器學習課程筆記02——處理房價預測問題(梯度下降演算法詳解)
建議記住的實用符號 符號 含義 m 樣本數目 x 輸入變數 y 輸出變數/目標變數
機器學習之--梯度下降演算法
貌似機器學習最繞不過去的演算法,是梯度下降演算法。這裡專門捋一下。 1. 什麼是梯度 有知乎大神已經解釋的很不錯,這裡轉載並稍作修改,加上自己的看法。先給出連結,畢竟轉載要說明出處嘛。為什麼梯度反方向是函式值區域性下降最快的方向? 因為高等數學都忘光了,先從導數/偏倒數/方向
優化梯度下降演算法 Momentum、RMSProp(Root mean square propagation)和Adam( Adaptive Moment Estimation)
https://blog.csdn.net/To_be_to_thought/article/details/81780397闡釋Batch Gradient Descent、Stochastic Gradient Descent、MiniBatch Gradient Descent具體原理。
gradient descent梯度下降演算法的優化
cost function優化 最原始更新由此 相應的難點程式碼: self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)] self.bi
監督學習-梯度下降演算法
公式不太好上傳,所以就截圖了,效果不太好,大家想看原件,請下載:https://download.csdn.net/download/qq_24369689/10811686 監督學習-梯度下降演算法 如果你還沒有接觸過梯度下降演算法,你在看下面內容之前可以先看一下,吳恩達的梯度下降的視訊:
訓練過程--梯度下降演算法(SGD、adam等)
SGD系列 1)Batch gradient descent(批量梯度下降) 在整個資料集上 每更新一次權重,要遍歷所有的樣本,由於樣本集過大,無法儲存在記憶體中,無法線上更新模型。對於損失函式的凸曲面,可以收斂到全域性最小值,對於非凸曲面,收斂到區域性最小值。 隨機梯度