luoguP3175 [HAOI2015]按位或 min-max容斥 + 高維前綴和
阿新 • • 發佈:2019-01-10
def names define 子集 math ble fmt limits tor
考慮min-max容斥
\(E[max(S)] = \sum \limits_{T \subset S} min(T)\)
\(min(T)\)是可以被表示出來
即所有與\(T\)有交集的數的概率的和的倒數
通過轉化一下,可以考慮求所有與\(T\)沒有交集的數的概率和
即求\(T\)的補集的子集的概率和
用FMT隨意做下吧...
註意:概率為1的時候需要特判
復雜度\(O(2^n * n)\)
#include <cstdio> #include <vector> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define de double #define ri register int #define rep(io, st, ed) for(ri io = st; io <= ed; io ++) #define drep(io, ed, st) for(ri io = ed; io >= st; io --) const int sid = (1 << 20) + 25; int n, show; de Max, sub[sid]; int main() { scanf("%d", &n); rep(i, 0, (1 << n) - 1) { scanf("%lf", &sub[i]); show |= i * (sub[i] > 1e-8); } if(show != (1 << n) - 1) { puts("INF"); return 0; } rep(i, 1, n) rep(S, 0, (1 << n) - 1) if(!(S & (1 << i - 1))) sub[S ^ (1 << i - 1)] += sub[S]; int T = (1 << n) - 1; rep(S, 1, (1 << n) - 1) { // no 0 if(__builtin_popcount(S) & 1) Max += 1.0 / (1.0 - sub[T ^ S]); else Max -= 1.0 / (1.0 - sub[T ^ S]); } printf("%.12lf\n", Max); return 0; }
luoguP3175 [HAOI2015]按位或 min-max容斥 + 高維前綴和