HDOJ 題目2709Sumsets(遞推)
阿新 • • 發佈:2019-01-25
Sumsets
Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1460 Accepted Submission(s): 574
Problem Description Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
Input A single line with a single integer, N.
Output The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
Sample Input 7
Sample Output 6
Source
Recommend teddy | We have carefully selected several similar problems for you:
思路:本打算用母函式做的,結果果然超時了,,而且還是先打的表,不會做就網上搜了一下,發現這麼做的,,,(打死我也想不出來啊)
遞推.
一、當n為奇數時,a[n]=a[n-1];
二、當n為偶數時有兩種情況:
1、n=n-2+1+1;
2、n=n/2*2;
所以:a[n]=a[n-2]+a[n/2];
ac程式碼
#include<stdio.h> int a[1000010]; void fun() { int i; a[1]=1; a[2]=2; for(i=3;i<=1000010;i++) { if(i&1) a[i]=a[i-1]%1000000000; else a[i]=(a[i-2]+a[i/2])%1000000000; } } int main() { int n; fun(); while(scanf("%d",&n)!=EOF) { printf("%d\n",a[n]); } }